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Abstract. In the conventional polar motion
equation, two different usages of imaginary unit
7 have been employed. From the view point that
the ¢ should only be employed for a numerical
convenience, we re-derive the polar motion equa-
tion with a particular attention to the damping
term. We show that two kinds of damping terms
are allowed for the polar motion equation.
When the damping term is proportional to the
wobble amplitude, we need to multiply the stan-
dard excitation term by a correction factor so
that we can exactly derive the “observed” exci-
tation. Depending on the Q-value, this factor
will potentially cause measurable changes in the
magnitude and phase of the excitation, and pos-
sible biases into the estimation of Chandler pe-
riod and Q.
Keywords. Damping, Imaginary unit, Chan-
dler wobble, Polar motion

1 Introduction

For the governing equation of the Earth’s wobble,
the following equation has been conventionally
used:
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where m stands for wobble, and is defined as
m1 + tme when the variable angular velocity
vector is set to be Q(mq,ma, 1 + mg); the sub-
script 1 and 2 denote the Greenwich meridian
and 90 deg. east longitude, respectively, and the
i (= v/—1) is an imaginary unit. The RHS of
eq. (1) represents the excitation, which is defined
as x1 + ixz [e.g., Munk and MacDonald, 1960;
Lambeck, 1980]. The resonant frequency gow is
defined in terms of Chandler period P and Q-

value,
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where another imaginary unit ¢ appears.

In view of the egs. (1) and (2), the imaginary
unit ¢ in m as well as in x is obviously for a
numerical convenience that allows us to contract
two variables into one variable. Even if we ex-
change the “real” and “imaginary” part in m
and Y, the physics of polar motion will never be
changed if they are commuted at the same time.
Obviously, however, we are never allowed to sim-
ply exchange the “real” and “imaginary” part of
ocw, because they have a physical meaning of
both resonant period and damping time. This
apparently two different usage of imaginary unit
in one governing equation seems at odds (at least
for us), and motivates us to re-examine the gov-
erning equation. We consider that the complex
variable representation in the time domain for-
mulation should be consistently employed only
for the purpose of numerical convenience.

The aim of this paper is two folds. First pur-
pose is to review the damping term associated
with the eq. (1), and show that it is proportional
to the first order time derivative of wobble m.
Second purpose is to show that, when a damp-
ing term is proportional to the wobble itself, we
have to multiply a correction factor to the con-
ventional polar motion equation eq. (1).

2 Two kinds of Damping term
2.1 *“Conventional” Damping Term

Decomposing the eq. (1) into real and imaginary
part, we see that the damping term is shown as
the second term in the LHS of eqgs. (3-4) below;
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Also, the eigenfrequency o* is equal to oow (1 +
1/4Q?), and is different than the ocw = 27/P.
The o* looks unphysical, because the pres-



ence of damping @) increases the eigenfrequency.
Nonetheless, this equation certainly allows the
following damped oscillation of egs. (5-6):

m1 = exp(—nt/QP)cos(2nt/P), (5)
me = exp(—nt/QP)sin(27t/P),  (6)

which is a fundamental assumption in the nu-
merous previous studies of polar motion.

The damping term in the conventional equa-
tion is proportional to the time derivative of wob-
ble amplitude; Munk & MacDonald (1960) states
that the term above corresponds to a frictional
torque acting in a direction opposite to the mo-
tion of the shell shifting in response to the wob-
ble. We should keep in mind that, as long as
one uses the conventional form of (1), the damp-
ing process for the Q in eq. (1) originates in the
above frictional torque. This type of torque has
been considered to work in the core [Munk &
MacDonald, 1960; Lambeck, 1980].

2.2  Another choice of Damping Term

We have another simple choice for the damp-
ing term, namely, the term being simply propor-
tional to the wobble amplitude. I regard this as a
well-known ‘Newtonian’ damping, since the first
time-derivative of the m; corresponds to the ac-
celeration, and the m; itself corresponds to the
velocity.

It is clearly inevitable to modify the conven-
tional eq. (1), and we start the derivation from
the scratch. For simplicity, we ignore the effect
of pole tide loading upon the Chandler period,
which does not affect our main concluion. The
‘Newtonian’ damping is the third term of LHS of
the equations below,
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where C' and A are the principal moments of iner-
tia around the polar and equatorial axis, respec-
tively, and L;(j = 1,2) is the torque around the
axis denoted as j; A,, represents the equatorial
principal moment of inertia for only the mantle.

It should be noted that the wobble Love num-
ber kY is not a complex but a real value. Lam-
beck (1980) used a complex Love number in his

derivation of polar motion equaion. The com-
plex Love number is, however, originally defined
in a frequency domain, and might be utilized
for purely harmonic phenomenon. Thus using
a complex Love number in a time domain polar
motion equation would be a mix of time domain
and frequency domain formulation.

Combining the egs. (7) and (8) in terms of ¢,
we arrive at the following equation:
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Here, we attached the asterisk in both the exci-
tation and Q in order to distinguish it from the
one used in eq. (1). The real and imaginary part
of eq. (9) are the following;
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Readers can easily verify that this again com-
forms to the damped free oscillation of eqs. (5—
6).

3 Summary and Discussion

We re-examined the polar motion equation from
the viewpoint that the imaginary unit ¢ should
only be used for a numerical convenience. As
long as we assume a simple linear damped oscil-
lation of eqgs. (5-6), there are two kinds of per-
missible damping terms, i.e., the second terms
in egs. (3-4) and the third terms in egs. (12-13).
Thus, both egs. (3-4) and (12-13) can be the po-
lar motion equation, while eqs. (3-4) have been
conventionally employed. However, when we re-
sort to the ‘Newtonian’ damping, the eq. (9) have
to be employed in place of eq. (1).

Three mechanisms have been considered as
candidates for the Chandler wobble damping,
fluid outer core, mantle and ocean. What damp-
ing term is relevant for each candidate? While
the conventional damping term is appropriate for
the processes in the outer core, the viscosity of
the outer core is too low to damp out the Chan-
dler wobble [Munk and MacDonald, 1960; Lam-
beck, 1980]. Thus we see that the conventional



damping term is geophysically implausible! On
the other hand, the “Newtonian” damping is ap-
proapriate for the phase lag associated with man-
tle anelasticity and non-equilibrium passive pole
tide.

In previous literature on the excitation of
Earth’s wobble, the deconvolution of observed
wobble into its excitation has been carried out
by way of eq. (1) by assuming the Chandler
period and Q-value, and the deconvolved exci-
tation with the eq. (1) was directly compared
with geophysical excitations. If the damping
term proportional to m is preferred, one can-
not simply follow this procedure. Instead, one
should multiply (1 + z%) to the eq. (1), so
that one can evaluate the x* in eq. (9); as a
caveat, one should consistently use the same Q-
value both in this factor and in the gow. Af-
ter that, one can compare the inferred excita-
tion with geophysical excitations such as the
atmospheric/oceanic/hydrological angular mo-
memtum.

Since the Q-value for the Chandler wobble is
still not well-constrained, this has some numer-
ical implications for the studies of polar motion
excitation. We can see how the x* in eq. (9) dif-
fers from the x in eq. (1), by equating the x*
with the ¥ multiplied by (1 +i55+). The math-
ematical relation between these two “physically
distinct” excitations are:
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If the Q—value is as high as O(100) or greater as
estimated in most previous studies, and if both
x1 and x2 have similar amplitudes, the numerical
bias would be at most a few percent in spite of
an appreciable difference in the appearance be-
tween egs. (3-4) and (12-13). This bias would be
proportionally larger if the Q is actually smaller,
for example, at about 50 as determined by Fu-
ruya & Chao (1996). Moreover, when either x;
or x2 has greater ampltiude than the other, as
observed in the annual atmospheric angular mo-
mentum (Chao and Au, 1991), the estimated ex-
citation can be appreciably different.

Although the imaginary unit ¢ is often used
in an eigen frequency in classical mechanics to
account for a damping, we need to be careful
in dealing with a damping of polar motion; same
thing would be true for a nearly diurnal free wob-

ble. From the view point that the imaginary unit
1 should be used just for numerical convenience,
the two is in eq. (1) are inconsistent on a physi-
cal front. The damping term in eq. (1) concerns
about processes in the fluid outer core, which is
surely negligible. The physical inconsistency is
leading to a numerical bias as seen in egs. (14—
15). We need to keep in mind that the bias will
introduce significant biases in the estimation of
the Chandler period and Q itself.
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