
Geophys. J. Int. (2005) 161, 230–242 doi: 10.1111/j.1365-246X.2005.02610.x
G

JI
V
ol

ca
no

lo
gy

,
ge

ot
he

rm
ic

s,
fl
ui

ds
an

d
ro

ck
s

Quasi-static thermoelastic deformation in an elastic half-space:
theory and application to InSAR observations
at Izu-Oshima volcano, Japan

M. Furuya1,2

1Earthquake Research Institute, University of Tokyo, Tokyo 113-0032, Japan. E-mail: furuya@eri.u-tokyo.ac.jp
2CIRES and Department of Physics, University of Colorado at Boulder, CO 80303–390, USA

Accepted 2005 February 8. Received 2005 January 11; in original form 2004 September 1

S U M M A R Y
We derive closed analytical solutions for quasi-static thermoelastic deformation in response
to instantaneous point and spherical heat sources in an elastic half-space. Since we can take
advantage of the solutions for an infinite medium, the derivation of solutions for a semi-infinite
medium is straightforward. We examine the spatial and temporal evolution of thermoelastic
deformation for point and spherical heat sources. We applied the solution to a radar interfer-
ometric observation of post-eruptive deformation associated with the 1986 fissure eruption
at Izu-Oshima volcano, Japan. Assuming a spherical heat source at a depth of 240 m with a
volume of 1.15 × 107 m3 and a temperature step 103 K, the predicted rate of post-eruptive
ground movement agrees with the observed rate within observational errors. Also, the same
parameter values allow us to compute the co-eruptive ground displacement by the effect of
mass intrusion, whose amplitude is consistent with the observed height (45 m) of the newly
formed cone. The derived solutions can be applied to transient ground displacements observed
at active volcanoes, and allow us to evaluate the heat amount of magma intruded at very shallow
depths.

Key words: deformation, geodesy, thermoelasticity, volcanology.

1 I N T RO D U C T I O N

Intereruptive and co-eruptive ground displacements at active volcanoes offer important information about what is going on beneath the surface.
They have commonly been interpreted in terms of the so-called Mogi model (Mogi 1958). This is an inflative or deflative mechanical point
source in an elastic half-space, and is supposed to represent an injection or ejection of magma into or out of the chamber. In the meantime,
because of marked improvements in space geodetic techniques such as the Global Positioning System and satellite radar interferometry, recent
measurements of ground displacement have revealed significant post-eruptive deformation at a number of active volcanoes around the world.
It is easy to qualitatively interpret those observations as due to thermoelastic contraction. However, quantitative modelling of post-eruptive
deformation in previous studies has relied upon numerical techniques such as the finite-element method (e.g. Briole et al. 1997; Stevens et al.
2001), since no simple analytical models have been available. The Mogi source only accounts for mass intrusion, and it does not consider a
transient thermoelastic effect associated with the intruded magma.

Furuya (2004) gave a closed analytical solution for a quasi-static thermoelastic deformation in response to an instantaneous point heat
source, and applied it to the post-eruptive deformation at Miyakejima volcano (Japan) observed by interferometric synthetic aperture radar
(InSAR). The first purpose of this paper is to extend the point source solution to spherical shell and spherical volume heat sources, and to
compare the spatiotemporal behaviour of these sources. Closed analytical solutions for spherical sources in an infinite region are shown, and
we will describe a recipe for computing a quasi-static thermoelastic response in an elastic half-space due to an instantaneous heat source. The
second purpose is to apply the derived formulation to the post-eruptive deformation at Izu-Oshima volcano (Japan) observed by InSAR, and
compare the observations with the prediction.

2 T H E O RY

The thermoelastic response due to a non-isothermal temperature distribution has been of practical importance in a wide range of disciplines
(e.g. Nowacki 1962). In the geoscience literature the static solution has been applied to some geothermal fields and volcanoes (Fialko &
Simons 2000; Masterlark & Lu 2004). However, the static solution cannot explicitly take into account the effect of spatiotemporal evolution
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in temperature associated with thermal diffusion upon the displacement field. A closed analytical solution for the quasi-static thermoelastic
deformation due to an instantaneous point heat source can be easily derived in an infinite space (Nowacki 1962, p. 200) (see also Wang 2000,
p. 110); the poroelasticity theory has many mathematical analogies with the thermoelasticity theory, but we do not go into the details in
this paper. Nevertheless, in the former literature covering both thermoelasticity (Nowacki 1962, chapter III) and poroelasticity (Wang 2000,
chapter 9) it has been rather complicated to derive the corresponding solution for a semi-infinite space. As a probable consequence, there has
been no application of closed analytical solutions for the quasi-static thermoelastic response to geophysical problems, with the exception of
the paper by Furuya (2004).

Meanwhile, Davies (2003) recently showed that the classical solutions by Mindlin & Cheng (1950a,b) for the thermoelastic response in
an elastic half-space medium can be derived in a straightforward way, taking advantage of the solution for an infinite region. Actually, the
result of Davies (2003) can even be extended to a quasi-static solution in which temperature variation over time is taken into account (Davies
2003, personal communication). By ‘quasi-static,’ we mean that the acceleration term in the momentum balance equation can be neglected,
and that the heat generated from the deformed media is also neglected in the thermal equation. Thereby, time enters the elastic equation only
as a parameter, and the derivation of a ‘quasi-static’ solution is greatly simplified. Following the central result in Davies (2003), a half-space
solution for the quasi-static response can be derived from

u(x, t) = u(∞) + (3 − 4ν)ū(∞) − 2x3

(
ε̄

(∞)
13 , ε̄

(∞)
23 , −ε̄

(∞)
33

)
, (1)

where u and ε ij are displacement and strain, respectively, the superscript (∞) stands for the solution in an infinite space, and the quantities with
the over bars, ū(∞) and ε̄

(∞)
i3 , are derived by simply replacing x3 in the corresponding infinite solution with −x3. That is, ū(∞)(x1, x2, x3, t) =

u(∞)(x1, x2, −x3, t), and ε̄(∞)(x1, x2, x3, t) = ε(∞)(x1, x2, −x3, t). Bold type is used to represent a vector consisting of three components.
Namely, once a solution for an infinite space is known, one can immediately and readily obtain the corresponding solution for a semi-infinite
space. In the following subsections we will derive solutions in an infinite space which can be used to derive half-space solutions.

2.1 An instantaneous point heat source

The quasi-static displacement potential for infinite space, φ(∞)(x, t), due to an instantaneous heat source of unit intensity q(x, t) = δ(t)δ(R)
at (ξ 1, ξ 2, ξ 3) is known as (Nowacki 1962)

φ(∞)(x, t) = − m

4π R
erf

(
R√
θ

)
, (2)

where

R ≡
√

(x1 − ξ1)2 + (x2 − ξ2)2 + (x3 − ξ3)2, (3)

m ≡ α(1 + ν)

1 − ν
, (4)

θ ≡ 4κt. (5)

The erf(x) is the error function (Abramowitz & Stegun 1972), and α, ν and κ are the linear thermal expansion coefficient, Poisson’s ratio and
thermal diffusivity, respectively. The dimension of q(x, t) is not [J] but [m3 K], since it is normalized by a product of density and heat capacity,
ρc. The infinity solution u(∞)

i (x, t) (i = 1, 2, 3) is found to be

u(∞)
i (x, t) = φ

(∞)
,i

= m

4π

(
xi − ξi

R3

)[
erf

(
R√
θ

)
− 2R√

πθ
exp

(
− R2

θ

)]
.

(6)

To derive solutions for a half-space, the strains for infinite medium below are necessary (see eq. 1):

ε
(∞)
i i = m

4π R3

(
1 − 3(xi − ξi )2

R2

)[
erf

(
R√
θ

)
− 2R√

πθ
exp

(
− R2

θ

)]
+ 4

R2

(xi − ξi )2

√
πθ3/2

exp

(
− R2

θ

)
, (7)

ε
(∞)
i j = 3m(xi − ξi )(x j − ξ j )

4π R5

[
2R√
πθ

(
1 + 2R2

3θ

)
exp

(
− R2

θ

)
− erf

(
R√
θ

)]
(i �= j). (8)

2.2 A heat source on a spherical surface

Taking advantage of the potential eq. (2) due to a point heat source, we will derive the deformation potential due to a heat source over a
spherical surface with radius of a (Fig. 1). Supposing that the surface density of the heat source is η, we can derive the potential �(∞)

ss at the
point P (Fig. 1) by

�(∞)
ss = − m

4π

∫ ∫
ηa sin ψdλa dψ√

R2 + a2 − 2Ra cos ψ
erf

(√
R2 + a2 − 2Ra cos ψ√

θ

)
,

= −ηam
√

θ

2R

[
X + ierfc(X )

](R+a)/
√

θ

|R−a|/√θ

(9)
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O

P(0,0,R)

a dψa sinψ

ψ
a sinψ dλ

λ

Figure 1. The heat source is distributed on a spherical surface of radius a with surface density η. Upon integrating the heat source element over the spherical
surface, we can derive the displacement potential: see eq. (9).

where ierfc(X ) is the integral of the error function (Abramowitz & Stegun 1972), and [ f (X )]X1
X0 = f (X1) − f (X0): a detailed derivation is

shown in Appendix A.
For the case of R > a, the first and second derivatives of �(∞)

ss with respect to R are:

�
(∞)
ss,R = ηa2m

R2

(
1 +

√
θ

2a

[
ierfc(X ) + R√

θ
erfc(X )

](R+a)/
√

θ

(R−a)/
√

θ

)
, (10)

�
(∞)
ss,R R = −2ηa2m

R3

(
1 +

√
θ

2a

[
ierfc(X ) + R√

θ
erfc(X ) + R√

πθ3/2
exp(−X 2)

](R+a)/
√

θ

(R−a)/
√

θ

)
. (11)

Corresponding solutions for displacement u(∞)
i (x, t), strains ε

(∞)
i i and ε

(∞)
i j (i , j = 1, 2, 3) are found to be

u(∞)
i = xi − ξi

R
�

(∞)
ss,R, (12)

ε
(∞)
i i = 1

R

[
1 −

(
xi − ξi

R

)2]
�

(∞)
ss,R +

(
xi − ξi

R

)2

�
(∞)
ss,R R, (13)

ε
(∞)
i j = (xi − ξi )(x j − ξ j )

R2

(
�

(∞)
ss,R R + 1

R
�

(∞)
ss,R

)
, (i �= j). (14)

The relation between total heat Q and heat source surface density η is Q = 4πa2η.

2.3 A heat source in a spherical volume

We can derive a deformation potential �(∞)
sv due to a heat source in a spherical volume of radius r, by integrating the spherical surface potential

(eq. (9)) from 0 to r with respect to a. For a later application, we consider the case of R > r ; the derivation for the case of R < r can be
similarly done:

�(∞)
sv =

∫ r

0
�(∞)

ss (a) da,

= −
∫ r

0

σa2m

R2
da − σm

√
θ

2R

∫ r

0

[
a ierfc

(
R + a√

θ

)
− a ierfc

(
R − a√

θ

)]
da,

= −σmr 3

3R
− σmθ3/2

2R

[
R√
θ

i2erfc(X ) + X 2

2
ierfc(X) + X 3

6
erfc(X) − exp(−X 2)

6
√

π
(X 2 + 1)

](R+r )/
√

θ

(R−r )/
√

θ

, (15)
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where i2erfc(X ) is the integral of ierfc(X ) (Carslaw & Jaeger 1959). The necessary integration formula is shown in Appendix B. The relation
between total heat Q and heat source volume density σ is Q = (4/3)πa3σ .

The first and second derivatives of �(∞)
sv with respect to R are:

�
(∞)
sv,R = σmr 3

3R2
+ σmθ3/2

2R2

[(
X 2

2
− R X√

θ
+ R2

θ

)
ierfc(X ) + X 3

6
erfc(X ) − exp(−X 2)

6
√

π
(X 2 + 1)

](R+r )/
√

θ

(R−r )/
√

θ

, (16)

�
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sv,R R = −2σmr 3

3R3
− σmθ3/2

R3

[
1

2

(
X − R√

θ

)2

ierfc(X ) +
(

X 3

6
− R2 X

2θ
+ R3

2θ3/2

)
erfc(X ) − exp(−X 2)

6
√

π
(X 2 + 1)

](R+r )/
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θ

(R−r )/
√

θ

. (17)

Corresponding solutions for both displacement and strain can be derived in the same manner as eqs (12)–(14), using eqs (15)–(17).

3 S O L U T I O N I N A H A L F - S PA C E : N U M E R I C A L R E S U LT S

Substituting the solutions for infinite space into eq. (1), we can derive the corresponding solutions for semi-infinite space. We will show
numerical results, and interpret the spatial and temporal evolution of thermoelastic deformation in response to an instantaneous heat source.

3.1 Point source

Figs 2(a)–(i) show a snapshot of the temporal evolution of displacement fields in the vertical cross-section passing through a point heat source
at a depth of 50 m; all the displacement vectors are scaled to the same length, and are referred to the original state. The heat magnitude of
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Figure 2. Temporal evolution of the displacement field due to a point heat source of q = 5 × 109 m3 K at a depth of 50 m. The vertical cross-section passing
through the point heat source is shown. The scale of the displacement vector is the same as the horizontal and vertical axes.
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the instantaneous heat source is assumed to be 5 × 109 m3 K, since a typical volume change due to volcanic eruptions is 5 × 106 m3 and
the temperature of magma is 103 K. Other material parameters are assumed as κ = 10−5 m2 s−1, α = 2 × 10−5 and ν = 0.3. For simplicity,
we ignore a melting of the ambient country rock due to the intruded high-temperature magma, and hence do not account for the effect of
viscoelasticity and associated relaxation processes suggested by Newman et al. (2001); the viscoelastic model of Newman et al. (2001),
however, does not generate a heat flow on the surface, while the thermoelastic model will obviously do this. Moreover, because of the latent
heat of fusion, magma releases additional heat other than the intrinsic heat, which will retard the cooling of country rock. If we assume the
magma density and latent heat of fusion as 3000 kg m−3 and 320 kJ kg−1, respectively (Turcotte & Schubert 2002), the latent heat in the above
case is 4.8 × 1015 J. However, the corresponding heat for the entire magma with a temperature of 103 K and a specific heat of 1.2 kJ kg−1 K−1

can be estimated to be 3000 × 1200 × 5 × 106 × 103 = 1.8 × 1016 J, which is a factor of four greater than the latent heat. Hereafter, we will
also ignore the effect of latent heat release associated with solidification.

We may interpret the temporal evolution in Fig. 2 as follows. The instantaneous heat source causes a co-intrusive thermoelastic deformation
not only around the source but also on the surface, since the source generates an instantaneous thermal stress. The largest deformation takes
place in the vicinity of the heat source, but the large displacements near the source in Fig. 2(a) are physically unrealistic; we will discuss this
apparent inconsistency in the next paragraph. The heat source region immediately starts to cool via thermal diffusion and contract through
thermoelasticity. As time elapses, the displacement around the heat source is no longer the greatest (Figs 2b–i), whereas the displacements on
the surface will last for a somewhat longer time (see also Fig. 5). Namely, the closer to the heat source, the earlier the transient displacements
will start compared with those close to the surface (see Fig. 5). The temperature in the ambient region will temporarily increase as the heat
diffuses away from the source region, which contributes to a continuous expansion. The effect of this temporal increase in temperature upon
displacement is, however, much smaller than that of the initially assigned temperature change at the source, and thus the temporal expansion
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Figure 3. Temporal evolution of the displacement field due to a spherical shell heat source of q = 5 × 109 m3 K at a depth d = 50 m: the radius is a = 20 m.
The vertical cross-section passing through the heat source is shown. The scale of the displacement vector is the same as the horizontal and vertical axes.
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Figure 4. Temporal evolution of the displacement field due to a spherical volume heat source of q = 5 × 109 m3 K at a depth d = 50 m: radius a = 20 m.
The vertical cross-section passing through the heat source is shown. The scale of the displacement vector is the same as the horizontal and vertical axes.

is negligible in comparison with the co-intrusive expansion. As time goes by, the temperature will start to decrease and thus gradually contract
in the ambient region as well. Measurable post-intrusive transient deformation on the surface starts about 1 month after the intrusion of the
heat source (see Fig. 5). The duration of the co-intrusive displacement and the initiation of transient displacement will henceforward depend
on how long the elastic thermal contraction takes to reach the observation point from the source region. For heat to diffuse a distance d would
take a time t of the order of d2/4πκ . In the present case of d = 50 m with κ = 10−5 m2 s−1, this can be estimated to be 0.76 months, which
we confirmed numerically. Indeed, Fig. 5 illustrates that the region closer to the heat source starts to cool down earlier than the more distant
region. How long, then, will the thermoelastic displacement take to settle down completely? Since it would be the time when the initial heat
magnitude Q can diffuse entirely away, we can evaluate it as Q2/3/4πκ . In the present case, this is about 74 yr, which we again confirmed
numerically (Fig 5). In reality, however, the final stage of settling down is a very slow process, and the most rapid transient deformation can
take place for decades after the inclusion of the heat source.

Fig. 2(a) shows that the displacement amplitude exceeds the source depth. This anomaly would be partly due to a fundamental assumption
in the thermal diffusion equation for the instantaneous heat source, which hypothesizes that heat flow is simply proportional to the spatial
gradient in temperature (Fourier’s law), and partly due to the largest heat source density associated with the ‘point’ source. Fourier’s law would
be valid and well-accepted for stationary and time-independent heat conduction problems. However, we should note that Fourier’s law when
applied to a transient problem such as an instantaneous source generates an infinitely large temperature gradient and thus a heat flux even at
places much further away from the source region at the instant of the source inclusion. This is obviously unrealistic, and in a strict sense it is
physically inconsistent to apply Fourier’s law to time-dependent problems (e.g. Morse & Feshbach 1953, p. 865). We think that this unphysical
situation becomes particularly evident in the case of a point source, which will generate an unrealistically large temperature increase near the
source. However, Fourier’s law will provide an approximate heat flow if time elapses sufficiently, and is mathematically easy to deal with,
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Figure 5. Temporal evolution of a vertical displacement observed (a) at the surface and (b) at depth d = 20 m as a function of elapsed time (yr) after the
intrusion of the heat source; note that the horizontal axis is in a logarithmic scale. Solid, dash-dotted and dotted lines stand for point, spherical shell and spherical
volume sources, respectively. The total heat source q = 5 × 109 m3 K is instantaneously set at a depth d = 50 m: the spherical radius a = 20 m.

providing us with a perspective on the transient diffusion problems in hand. Thus, Fourier’s law has been applied even to transient problems
in a wide range of disciplines (Carslaw & Jaeger 1959; Nowacki 1962).

3.2 Comparison between a point source and spherical sources

For a comparison with the point heat source response, we show numerical results of heat sources with both a spherical shell (Fig. 3) and a
spherical volume (Fig. 4). The initial amount of heat is the same as in the point source, but the spherical radius is set to be 20 m. Also shown
in Fig. 5 is a comparison of the transient vertical displacements observed at the surface and at a depth of 50 m; the horizontal location is the
same as the source.

The most significant difference is seen in the vicinity of the heat source at the first stage (Figs 2a , 3a and 4a). This is obviously due to
differences in the heat source density, which is largest for the point heat source. In the far field, however, we do not recognize any differences
in the co-intrusive displacements for any of the three sources (Fig. 5). Namely, a far-field solution is dependent on the total heat magnitude,
and the point source thus provides a reasonable approximation, although how far we will observe the deformation depends on the magnitude
of the heat source.

Fig. 5(b) shows that the shell heat source is fastest to initiate a transient deformation, but is slowest to settle down. The rapid initiation
of transient deformation occurs because the shell source can most efficiently release heat towards both the inside and outside of the source
region. Meanwhile, the slow termination occurs because the heat flowing into the shell must ultimately escape from the shell, which takes
longest in comparison with the other sources.

Although the evolution of both point and spherical volume sources looks roughly similar (Fig. 5), the initiation of transient deformation
is faster for the spherical volume source. This is due to a broad distribution of heat sources allowing heat to be released more efficiently.

4 A P P L I C AT I O N T O I N S A R O B S E RVAT I O N O F P O S T - E RU P T I V E D E F O R M AT I O N

4.1 The 1986 eruption of the Izu-Oshima volcano, Japan

The Izu-Oshima volcano is a basaltic stratovolcano island on the northern edge of the Philippine Sea Plate, about 100 km south-southwest of
Tokyo, Japan (Fig. 6). Recent eruptive activity extends back to 1986 November. On 1986 November 21 the lava flows and scoria cone were
generated by a fissure eruption that began on the caldera floor at the northeastern foot of Mount Mihara (Fig. 7); Mount Mihara is also a scoria
cone due to the great 1777 eruptions. It has summit pit crater (A in Fig. 7) and the difference in elevation exceeds 150 m above the caldera
floor. Fig. 7 shows the spatial distribution of recent lava and scoria cone, redrawn from Isshiki (1984) and Kawanabe (1998). The height of
the scoria cone relative to the caldera floor and the lava thickness due to the 1986 eruptions were measured by photogrammetry (Nagaoka
1988). The maximal difference in elevation at cone B (CB) was 45 m at the north of crater B (Fig. 7). The thickness of lava emplaced upon
the caldera floor is, on average, 5–7 m for LB1, 10–20 m for LB3 and 4–5 m for LA (Fig. 7). While the volume of the 1950–1951 and 1986
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Figure 6. Location and elevation map of Izu-Oshima volcano island, Japan. PHS stands for Philippine Sea Plate.

Figure 7. Distribution of the crater, lava and scoria cone inside the caldera by the 1950–1951 and 1986 eruptions, redrawn from Isshiki (1984) and Kawanabe
(1998). The crater B was first formed during the 1986 eruptions. LA (CB) stands for the lava (cone) from the crater A (B). The 1986 LB1 flowed out upon the
1951 LA51E, whose shape is explicitly shown. Note that some area in the middle part of LA51E was left unchanged.

lava is estimated to be 2.3 × 107 m3 and 1.9 × 107 m3, the volume of scoria due to the 1950–1951 and 1986 eruptions is 0.36 × 107 m3 and
1.73 × 107 m3, respectively (Sakaguchi et al. 1987).

In the early 1990s, it was confirmed through precise crustal deformation measurements by EDM (electro-optic distance measurement)
and GPS (Global Positioning System) that the ground surface was exhibiting tumescence. The swelling has been explained as due to an
inflation source (Mogi 1958), and has been interpreted as representing a refilling of the deeper magma chamber with new magma at a depth
of around 8–10 km, indicating the possibility of future eruptions (Watanabe 1995). Nevertheless, as already shown by InSAR data from the
Japanese Earth Resource Satellite (JERS) (Murakami et al. 1998; Okuyama et al. 2002), we can observe a localized deformation around the
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Table 1. ERS1/2 Data in this study and maximum subsidence rate.

Pair Date (ERS1/ERS2) Time span (yr) B⊥/Ha (m) Subsidence rate (cm yr−1)

a 1995 Oct. 1/1997 Sept 1 1.92 10.2/124.5 3.3 ± 0.7
b 1993 May 21/1998 Nov. 30 5.53 5.1/249.0 3.1 ± 0.7
c 1993 July 30/1999 June 28 5.91 15.2/83.6 3.1 ± 0.7
d 1993 Apr. 16/1999 Apr. 19 6.01 3.6/352.8 2.7 ± 0.9

Figure 8. Four differential interferograms around the caldera; see Table 1 for each measurement period and perpendicular baseline. Phase values of interferogram
are wrapped, and one colour cycle corresponds to a line of sight change of 2.8 cm, half the wavelength of the ERS1/2 data. The deformation rate profile along
P–Q in (a) with respect to the reference (white circle) is shown in Fig 9.

caldera through European Remote Sensing satellite (ERS1/2) InSAR data, which we will account for using the thermoelastic theory derived
in the preceding sections.

4.2 InSAR data and analysis result

InSAR is a remote sensing technique that is capable of detecting ground displacements of the order of millimetres to centimetres through
differential measurements of the phase component of temporally separated SAR signals (e.g. Massonnet & Feigl 1998; Hanssen 2001).

Four interferograms derived from ERS1/2 SAR images between 1995 and 1999 were used for analysis (Table 1). InSAR analysis can
be easily accomplished where coherence loss is small. The area covered with lava flow preserves a high coherence (Lu & Freymuller 1998).
Also, only data pairs with perpendicular baseline components (baseline component projected perpendicular to the viewing direction) of less
than 20 m were used in this study (Table 1) so as to avoid spatial decorrelation as well as to minimize the sensitivity of the phase measurement
to topographic roughness. The height ambiguity Ha in Table 1 is the topographic height difference causing one cycle of phase change. As the
topographic variation in the caldera is less than 250 m, the short perpendicular baseline pairs allow us to suppress errors in the 50 m mesh
digital elevation model (DEM) derived by the Geographical Survey Institute (GSI). Hence, the detected fringes in Fig. 8 are entirely due to
ground displacements.

Differential interferograms in Fig. 8 show that the area of largest displacement closely matches CB and LB3 in Fig. 7. Moreover, the
deformation rate along P–Q in Fig. 8(a) is largely proportional to the relative height of the CB (Fig. 9); the errors in the estimated deformation
rate and deposit thickness are ±0.6 cm yr−1 and ± 5 m, respectively. Note that the data pairs in Fig. 8 were acquired about 7–9 yr after the
1986 eruption. Fig. 8(a) tells us that the maximal change in the line-of-sight at a point Q with respect to the reference point is 5.9 ± 1.2 cm;
uncertainties are largely due to those at the reference point. If we suppose a source beneath Q, the displacement at that point can be regarded
as entirely due to the vertical component. With a nominal angle of 23 ± 3◦ for the look angle, we can convert the line-of-sight changes to the
vertical displacements by multiplying by 1.064. Thus, the subsidence rate at Q is 3.3 cm yr−1. The estimated subsidence rates at that point for
other data pairs are also shown in Table 1.
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Figure 9. Estimated subsidence rate profile as a function of the relative height of cone B along the line P–Q in Fig. 8(a). The reference point of the subsidence
is at the circle in Fig. 8(a).

4.3 Modelling cone formation and subsequent secular ground displacement

4.3.1 Result

Assuming that the newly formed cone and subsequent secular ground displacement are caused by magma intrusion at very shallow depth and
subsequent thermoelastic contraction, to what extent can we explain the observed size of the cone and post-eruptive deformation? To this end,
we use both the Mogi model to represent a static mass intrusion and the formulation for a quasi-static thermoelastic deformation derived in
the preceding section. As shown by McTigue (1987), Mogi’s ‘point’ inflation model can be used, to a good approximation, as a spherical finite
volume source even when its radius to depth ratio exceeds 0.5. Meanwhile, since temporal evolution of the post-eruptive deformation depends
upon whether a point or a spherical volume source is assumed, we will employ the formulation for a spherical volume source. Although we use
the term ‘co- and post-eruptive’ deformation, what the proposed thermoelastic formulations can compute is actually a ‘co- and post-intrusive’
deformation, since they do not deal with any eruption processes themselves. Thus the derived source parameters below should be regarded as
caused by an equivalent intrusion source.

As shown by Delaney & McTigue (1994), the injection volume is two-thirds of the uplift volume if they are caused by a spherical volume
source with Poisson’s ratio 0.25. With reference to the estimate by Sakaguchi et al. (1987), we see that the injected volume is 1.15 × 107 m3,
and that its radius is 140 m.

Figs 10(a) and (b) indicate the predicted co-eruptive displacement fields on the surface due to the Mogi source and those due to the
thermoelastic effect, respectively. For the computation, we assumed a central depth of the source at 240 m, a temperature step of 103 K, a thermal
diffusivity of 10−5 m2 s−1 and a linear thermal expansivity of 2 × 10−5. These material properties are largely consistent with laboratory-derived
values, although the thermal diffusivity is appreciably larger by a factor of 10 (e.g. Turcotte & Schubert 2002). We speculate that since the
actual cooling process involves not only a pure thermal diffusion but also a forced cooling by meteorological and/or ground water factors,
as well as a convective process due to a vesiculation of volatiles, magma can be cooled down more efficiently, and that thermal diffusivity
can be effectively higher than a laboratory-derived value. The total annual precipitation at Izu-Oshima is 2000–3000 mm on average (Japan
Meteorological Agency, http://www.data.kishou.go.jp).

Comparing Figs 10(a) and (b), the co-eruptive displacement due to the mass intrusion is an order of magnitude greater than that due
to the thermoelastic expansion effect. However, the Mogi source has no contribution to the post-eruptive transient deformation, and the
thermoelastic effect alone can generate the post-eruptive deformation. Figs 10(c) and (d) show snapshots of the thermoelastic displacement
fields on the surface at the instant of 18.3 yr and 50.7 yr after intrusion of the heat source, respectively. Although the displacement amplitudes
are smaller than those due to co-eruptive deformation, those predicted changes are measurable by current geodetic techniques. Figs 10(e) and
(f) show temporal changes in vertical ground displacement and subsidence rate at a ground surface immediately above the source. In Fig. 10(f),
observed subsidence rates are indicated. Both the amplitude of maximum uplift and the horizontal coverage of co-eruptive displacement in
Fig. 10 are consistent with cone B at the time of the 1986 fissure eruption (see Figs 7 and 9). The observed post-eruptive subsidence rate is
also in good agreement with the prediction. It is interesting to note from Fig. 10(f) that the maximum subsidence rate will occur more than
two decades after the intrusion of the heat source.
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       (Mogi source only)   
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Figure 10. Spatial and temporal changes of co-eruptive and post-eruptive displacement fields at the surface due to an equivalent intrusive source; see text for
prescribed parameters. (a) Co-eruptive displacements due to mass intrusion as a function of horizontal scale. (b) Co-eruptive displacements due only to the
thermoelastic effect. (c, d) Post-eruptive displacement at the instant of (c) 18.3 yr and (d) 50.7 yr after intrusion of the heat source. (e) Co- and post-eruptive
vertical displacement at the surface immediately above the heat source as a function of time (yr) after the intrusion. (f) Post-eruptive subsidence rate at the
surface immediately above the heat source as a function of time (yr) after the intrusion. Four observed rates of subsidence in Table 1 are shown together.

4.3.2 Discussion

These results suggest that further extensive ground surface measurements can better constrain the heat sources in the previous eruptions.
The results also have an implication for prediction of eruptions based upon precision measurement of ground movement. Namely, in order to
assess the ground displacement data for a forthcoming eruption event, we need to accurately evaluate the effect of previous eruptive activities
upon the on-going ground displacement.
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We have assumed so far that the observed post-eruptive deformation was caused by thermoelastic contraction of the magma intruded at
a shallow depth. Consolidation of the substrate due to the deposited load is another possible subsidence mechanism. Employing Terzaghi’s
consolidation theory (e.g. Wang 2000), we can roughly evaluate the plausibility of a consolidation mechanism. The characteristic time T for
consolidation is estimated by hydraulic diffusivity c (consolidation coefficient) and the thickness of the substrate z:

T ∼ z2

4c
. (18)

In order for that process to last longer than a decade with a thickness of the order of 103 m, the maximal allowable hydraulic diffusivity is
10−3 m2 s−1; if the substrate is thinner, a smaller hydraulic diffusivity is required. In the case of granite, the permeability of which can be as low
as 10−18 m2, the hydraulic diffusivity is of the order of 10−4–10−5 m2 s−1 (Wang 2000). However, the actual substrate would be porous basaltic
lava and scoria deposits, and indeed the horizontal permeability at Izu-Oshima has been estimated to be as high as 10−8 m2 (Koizumi et al.
1998), based upon water well observation data. This value is orders of magnitude greater than that for sand or sandstone, whose permeability
and hydraulic diffusivity are 10−12 m2 and 10−1–1 m2 s−1 (Wang 2000, Table 3.1). Hence, the consolidation process, if any, should be much
faster, and would not last longer than a decade, although crude estimates based on a 1-D theory cannot totally rule out the possibility of such
a mechanism.

5 C O N C L U S I O N

We have derived closed analytical solutions for a quasi-static thermoelastic deformation response to instantaneous point and spherical heat
sources in an elastic half-space, and examined the spatiotemporal displacement fields. We generated differential interferograms at Izu-Oshima
volcano, Japan, using ERS1/2 data, and interpreted the post-1986 eruption deformation by applying the derived solutions for a quasi-
static thermoelastic deformation. Using realistic parameter values of physical properties, we were able to obtain a good agreement between
observation and calculation. A copy of the MATLAB codes (MATLAB is a registered trademark of The MathWorks, Inc., Natick, MA, USA;
http://www.mathworks.com/) can be obtained from the author upon request.
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A P P E N D I X B :

The following integration formula is necessary in the derivation of eq. (21):∫ x1
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