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Abstract

Ground surface deforms due to various causes on earth. Measuring and monitor-
ing ground surface displacement can contribute to disaster prevention and mitigation.
Synthetic aperture radar (SAR) interferometry (InSAR), one of the useful geodetic
techniques to measure the displacement, provides spatially dense information with
high resolution and has revealed a lot of detailed crustal and ground deformations.
In recent years, InSAR time series analysis, which is feasible by abundant and high
quality SAR data, has revealed very slow deformation on the order of a few mm/yr.
Diversity of available radar frequency bands, i.e., L-, C- and X-band, enables us to
choose the optimal data depending on a target. Moreover, integrative use of these
data with different bands will disclose unknown deformation which conventional
techniques cannot detect. It is important for the selection of the optimal data and
the integrative use to comprehend the difference of the features among the different
bands.

One of the inevitable problems for InSAR is decorrelation. InSAR can no longer
measure deformation when a condition of ground surface changes greatly. As the
decorrelation proceeds quickly with time over pasture on drained peat soils in the
Netherlands, which is one of the study areas in this thesis, conventional InSAR tech-

niques including time series analysis methods such as Persistent Scatterer Interfer-
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vi Abstract

ometry (PSI) and Small BAseline Subset (SBAS) have not succeeded in detecting the
detailed displacement so far. Moreover there is no other effective measuring method
because stable ground observation points cannot be installed on the soft soils. Peat
soils are decreasing because of drainage for agricultural use, resulting in subsidence
and emission of greenhouse gases. Therefore, figuring out the height change over
peat meadows is crucial for flood hazard assessment, water management, and global

warming prevention.

In this thesis, I will mention mainly following three topics about InSAR with

different bands.

(1) Comparison of PSI measuring capability of L- and C-band

InSAR time series analysis is a promising technique to monitor slow displace-
ment, e.g., subsidence and deformation of infrastructures. To be used as a monitoring
method, it is necessary to know the measuring capability, i.e., what deformation can
be detected. However, there are few studies about measuring precision of L-band
data by comparing with ground observation data, whereas many studies using C-
and X-band exist because they have much available data. Moreover, leveling results
which have only a vertical component and sparse GNSS data are mainly used as the

ground data to be compared, which might be insufficient for quantitative evaluation.

Here I conduct PSI analysis using L- and C-band data, quantitatively assess the
measuring precision, and compare the results between L- and C-band. The study
area is around Omaezaki city, Japan, where continuous GNSS observation stations
have been densely deployed. According to the result, density of identified PS points

is proportional to the inherent spatial resolution of the used data. In vegetated ar-
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eas, L-band is superior than C-band in terms of detection of PS points. Measuring
precision of an individual PS point is 8-11 mm and 2-3 mm for L-band and C-band,
respectively, almost proportional to the wavelength, which means shorter wavelength
is more suitable for pointwise usage such as infrastructure monitoring. According to
the comparison with GNSS, measuring accuracy of spatially averaged neighboring
PS points tends to have no dependency on the wavelength, 4-6 mm of LOS displace-
ment and 2 mm/yr of mean LOS velocity. In other words, L-band can have compa-
rable precision with C-band by spatially averaging the measurement of neighboring

PS points.

(2) Quantitative assessment of temporal decorrelation in L-, C-, and X-band

Temporal decorrelation behavior of InSAR depends on bands of used data and
scattering properties on the ground. In an area where temporal decorrelation is faster
than the minimum interferometric time interval, i.e., revisit time of a satellite, it is
impossible to measure displacement by spaceborne SAR interferometry. Therefore
the feasibility of measuring displacement by InSAR in a area with quick temporal
decorrelation is determined by the radar wavelength, the scattering properties and

the revisit time of a satellite.

First, a temporal decorrelation model described by three parameters is proposed.
Next, coherence of interferograms produced from actual SAR data with three differ-
ent bands (L-, C- and X-band) is calculated. The result shows that interferograms
with a short time interval can have adequate coherence and that the coherence tends
to be higher in winter than in summer on the condition that no sudden and complete

change of ground surface (e.g., cultivation or snow fall) occurs. Then the parame-
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ters of the temporal decorrelation model for each wavelength and for each season are
estimated from the calculated coherence data. As a result, it is quantitatively shown
that the temporal decorrelation is slower in a longer wavelength and in winter. More-
over it is also quantitatively proven that the larger number of independent samples for
multilook, i.e., higher inherent spatial resolution can provide more significant infor-
mation. New SAR satellites that have a shorter revisit time than their predecessors’

have a possibility to allow more noteworthy interferometric results.

(3) Displacement extraction by integrative InSAR analysis

A short time interval of an interferometric pair is crucial to obtain adequate co-
herence in quickly decorrelating peat meadow. However, a short time interval means
small displacement for slowly deforming phenomena such as subsidence. Hence, it
is difficult to measure the displacement because of relatively large noise (low SNR).
Even InSAR time series analysis methods such as PSI and SBAS, which mitigate
noises and can detect small displacement by using a large amount of data, have not
succeeded in achieving adequate measuring precision yet in the target area.

Here I propose an advanced method to obtain a more robust solution by integra-
tive use of SAR data with different wavelengths and incidence angles. I also propose
an efficient adaptive coherence estimation method to improve the precision of co-
herence estimator and multilooked phases by filtering out scatterers with a different
scattering property from surrounding major scatterers. Applying these methods, pre-
cise displacement behavior over the pasture has been detected for the first time. The
pasture area has subsided 33.6 mm/yr with annual up-down fluctuations of 10.6 mm

amplitude, maximum on 17 February and minimum on 18 August on average.
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Chapter 1

Introduction

1.1 Ground surface deformation and measuring meth-
ods

Ground surface of the earth deforms by various causes, e.g., earthquakes (preseis-
mic, coseismic, postseismic and interseismic), volcanic activities, ground subsidence
and landslides. These natural disasters sometimes bring serious consequences for hu-
man society. Monitoring and measuring the deformation can contribute to disaster
prevention and mitigation.

Various geodetic techniques have been developed and employed to measure the
deformation. Leveling is one of the most classical but precise methods to mea-

sure relative elevation and vertical displacement. Global Navigation Satellite System

1



2 Chapter 1: Introduction

(GNSS) has become a major monitoring way recently, which can provide temporally
contiguous three dimensional displacement globally and locally with high precision.
Synthetic aperture radar (SAR) interferometry (InSAR) achieves spatially continu-
ous observation, giving dense information.

Each technique has advantages and disadvantages; there is no perfect technique.
A proper method should be selected depending on a characteristic of the deformation
to be measured, or a combination of these techniques is more effective than individual
ones. For example, while leveling and GNSS have higher precision than InSAR,
they are not suitable for discovering unknown local displacement because they need

ground observation instruments and their spatial density is limited.

1.2 Objective and outline of this thesis

A research objective of this thesis is to extract a deformation signal by an ad-
vanced InSAR processing approach in a region where there has been no suitable
and satisfactory measuring methods so far. I investigate features of different radar
frequency bands and feasibility in the study area, develop a multisatellite InSAR
algorithm, and validate with real data.

Chapter 2 provides fundamentals of SAR, InSAR and time series analysis, and

features of various SAR satellites.

Chapter 3 clarifies measuring precision of PSI using L- and C-band SAR data,
and difference of the features between two bands.

Chapter 4 describes features of the study area, pasture on drained peat soils in the

Netherlands, and limitations of existing techniques.
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Chapter 5 is dedicated to a feasibility study on the use of InSAR in terms of co-
herence in the target area. A temporal decorrelation model is proposed and temporal
decorrelation behavior is evaluated using numerous real SAR data.

Chapter 6 describes an advanced InSAR processing algorithm using multisatel-
lite data. Detailed displacement in the area is revealed precisely by applying the
integrative algorithm with the real data.

Chapter 7 summarizes this research.



Chapter 2

SAR Interferometry

2.1 SAR

SAR is an imaging radar technique with high spatial resolution. A SAR antenna
is usually mounted on an airplane or satellite and transmits microwave pulses to the
ground during the flight. Figure 2.1 depicts the geometry of a SAR observation. The
flying and looking direction is called azimuth and range, respectively. The range di-
rection is slanting, not vertical to the ground. An angle between the vertical axis and
the slant range direction is called off-nadir angle, slightly smaller than the incidence
angle due to the earth curvature. The SAR antenna also receives backscattering of
the transmitted pulses from the ground, which has information of amplitude and a
fraction of phase. While the amplitude represents intensity of the backscatter, the
phase is related to distance between the SAR antenna and the ground. High resolu-

tion is achieved by a synthetic aperture technique in the azimuth direction and a pulse

4
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: -
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Z

Swath width Ground surface

Figure 2.1: Geometry of a SAR observation.

compression technique in the range direction (Curlander and McDonough, 1991).

In this thesis various satellite SAR data are used. Different SAR satellites have
different characteristics, e.g., revisit time and wavelengths. Table 2.1 lists past and

present major SAR satellites, and their specifications.

2.2 InSAR

If two or more SAR images with almost identical geometry exist, InNSAR can
be applied (Figure 2.2). InSAR calculates phase difference, consisting of several
components. One of the main components is topography. The InSAR technique has
been initially developed for estimation of topography (Jordan et al., 1996; Bamler,
1999). Another component is ground surface displacement. If the topography (i.e.,
the topographic phase component) is known, ground surface displacement can be

separated on the order of millimeters or centimeters (Massonnet et al., 1993). This
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Table 2.1: Past and present major SAR satellites

Satellite Year Country dr* Band
ERS-1 1991 - 2000 EU 35 C
JERS-1 1992-1998  Japan 44 L
ERS-2 1995 - 2011 EU 35 C
RADARSAT-1 1995-2013 Canada 24 C
Envisat 2002 - 2012 EU 35 C
ALOS 2006 -2011  Japan 46 L
RADARSAT-2 2007 - Canada 24 C
TerraSAR-X 2007 - Germany 11 X
COSMO-SkyMed® 2007 - Italy 16 X
TanDEM-X 2010 - Germany 11 X
Sentinel-1A 2014 - EU 12 C
ALOS-2 2014 - Japan 14 L

2 Standard revisit time (day)
b Constellation of four satellites

technique is called Differential INSAR (DInSAR) as well as simply InSAR. Since
several kinds of useful global digital elevation models (DEM) are available currently
(e.g., Shuttle Radar Topography Mission (SRTM, Farr et al. (2007)) DEM and Ad-
vanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital El-
evation Model (ASTER GDEM, Tachikawa et al. (2011))), DInSAR can be applied
every land on earth (except higher latitude than 83°). DInSAR has detected ground
surface displacement due to various mechanisms, such as tectonics (Massonnet et al.,
1994; Ozawa et al., 1997; Tobita et al., 2011; Kobayashi et al., 2011, 2012; Abe et al.,
2013), volcanism (Fujiwara et al., 2000; Nishimura et al., 2001; Furuya, 2005; Ozawa
and Fujita, 2013; Takada and Fukushima, 2013), subsidence (Nakagawa et al., 1999;
Ng et al., 2009) and landslides (Kimura and Yamaguchi, 2000; Une et al., 2008; Sato

et al., 2012, 2014). In this thesis, InNSAR means DInSAR, not for the topographic
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Figure 2.2: Principle of InSAR.

estimation. The reader is referred to Bamler and Hartl (1998); Rosen et al. (2000);

Hanssen (2001) for further reference on the SAR and InSAR technique.

Scattering properties at the same location between SAR acquisitions used for
InSAR should be as identical as possible in order to get a better coherent signal. A
drastic change of the surface condition, e.g., snow coverage or land formation, leads
to loss of coherence, called decorrelation. No deformation signal can be extracted

from a decorrelated interferogram.

One of the most crucial factors affecting on coherence is a frequency band (wave-
length) of the transmitted microwave. The wavelengths of L-, C-, X-band are ap-
proximately 24 cm, 5.6 cm, 3.1 cm, respectively. While L-band radar can generally
penetrate vegetation and reach stable ground, C- and X-band cannot (Figure 2.3).
One of the reasons why Japanese SAR satellites have an L-band sensor is to obtain
a coherent signal even in widely and densely distributed vegetated areas all over the
country. However L-band also has drawbacks, e.g., high sensitivity to ionospheric

disturbances (Rignot, 2000; Wright et al., 2003). Moreover, Sandwell et al. (2008)
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reported that L-band has lower measuring precision than C-band.

The interferometric differential phase d¢ contains several phase components,

5¢ — 6¢def0 + 6¢topo + 6¢orb +6¢atm + 6¢n0ise’ (21)

where §¢°™° is the differential phase due to surface displacement along a line-of-sight
(LOS) direction between two acquisitions, §¢? is the residual topographic phase
caused by a DEM error, §¢° is the residual phase caused by satellite orbit inaccura-
cies, 6¢™™ is the differential phase of atmospheric phase screen (APS) between two
acquisitions and 6¢"*° includes the other error contributions such as a coregistration
error and decorrelation. These phase components have different spatial and temporal
characteristics. 6¢'P° always comes out at the same location where the DEM error
exists and is proportional to a perpendicular baseline (B, the perpendicular compo-
nent of the distance of the satellite at two acquisitions to the look direction) of the
interferometric pair. 5¢°™ is a smooth plane and proportional to the orbit inaccuracy.
5¢*™ is also spatially smooth but temporally random. §¢°® and §¢*™ are long wave-

lengths in space domain and can be dramatically reduced by fitting the phase to the
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ground truth surface deformation data collected by, e.g., GNSS or leveling if they are

available (Wei et al., 2010; Kobayashi et al., 2011; Tong et al., 2013).

2.3 InSAR time series analysis

InSAR time series analysis overcomes the cumbersome noises seriously contam-
inating the conventional InSAR result (Hooper et al., 2012). Using a lot of images
allows reduction of the noises, resulting in high precision of the measurement. There
are mainly two different approaches, Persistent Scatterer (PS) Interferometry (PSI)
and Small BAseline Subset (SBAS). PSI focuses on pointwise, stable and hardly
decorrelating scatterers, e.g., buildings or rocks (Ferretti et al., 2000, 2001; Kampes,
2005; Hooper et al., 2007). SBAS increases signal-to-noise ratio (SNR) by using
interferometric pairs only with a small perpendicular baseline and a time interval,
and multilooking at the expense of spatial resolution (Berardino et al., 2002; Pepe
et al., 2005; Lanari et al., 2007). In both methods, temporally random atmospheric
noise 6¢*™ can be mitigated by a statistical approach. Hybrid techniques have also
been proposed recently (Hooper, 2008; Ferretti et al., 2011). In recent days these ap-
proaches are becoming a standard instead of the conventional InNSAR owing to abun-
dantly accumulated SAR data and rapid development of the analytical techniques.
Many applications have been reported, such as to tectonics (Furuya et al., 2007;
Arikan et al., 2010; Fukushima and Hooper, 2010; Peyret et al., 2011), to volcanism
(Hooper et al., 2004, 2007; Doin et al., 2011; Ozawa and Ueda, 2011; Champenois
etal., 2014), to subsidence (Crosetto et al., 2008; Lopez-Quiroz et al., 2009; Aobpaet

et al., 2013; Arimoto et al., 2013), to landslides (Ferretti et al., 2011; Sun et al., 2014)
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and to infrastructures (Arikan and Hanssen, 2008; Chang and Hanssen, 2012, 2014;

Shamshiri et al., 2014).
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3.1 Introduction

As mentioned in Section 2.3, PSI can measure deformation at identified PS points
with high spatial resolution and high precision. PSI is a promising technique for de-
formation monitoring, e.g., subsidence and infrastructure. In order to use PSI as a
monitoring method, it is important to know its measuring capability, i.e., what defor-
mation can be detected. However, there are few studies about measuring precision
of L-band data by comparing with ground observation data, whereas many studies
using C- and X-band have been conducted because there have been much available
data of these bands since earlier times (Crosetto et al., 2008). Moreover, leveling
results which have only a vertical component and sparse GNSS data are mainly used
as the ground data to be compared, which might be insufficient for quantitative eval-
uation. Here I conduct PSI analysis using L- and C-band data, quantitatively assess

the measuring precision, and compare the results between L- and C-band.

3.2 Study area, data and method

3.2.1 Study area and “H points”

The study area is around Omaezaki city, Shizuoka, Japan, where a lot of ground
observation equipments such as seismometers and strain meters have been densely

deployed in order to detect a preslip of a coming Tokai earthquake (Figure 3.1). As
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Figure 3.1: An optical image of the study area and locations of GNSS continuous
observation points. Numbers represent identification number of the H points. Char-
acters of a-c indicate areas where density of PS points is computed (Table 3.2).

a part of the dense ground observation network, Geospatial Information Authority
of Japan (GSI) started continuous GNSS observation at 25 stations (called H points)
in 1999, in addition to GNSS Earth Observation Network System (GEONET) which
consists of approximately 1300 stations all over Japan (Kawawa and Suga, 2000).
The interval between each H point and between other GNSS stations in this region
are only about 1 km and 10 km, respectively, whereas standard GEONET stations in
other areas have an about 20 km interval. In other words, this area has one of the

densest GNSS observation network in the world.

According to the result of the continuous GNSS observation, steady northwest-
ward deformation and subsidence has been detected at the southeastern tip of the

peninsula, with an amount of about 1 cm/yr (Figure 3.2).
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Figure 3.2: Displacement observed by GNSS at GNSS continuous observation points
for seven years (2004-2011). A red star represents the reference point. Red and blue
arrows on each point indicate vertical and horizontal displacement, respectively.

3.2.2 Data

I used L-band Advanced Land Observing Satellite (ALOS) data and C-band
RADARSAT-1 data. Both ALOS and RADARSAT-1 have two data sets, i.e., four
data sets of AA, AD, RDF, and RDS are available, which have different orbital direc-
tions, observation modes, or incidence angles (Table 3.1, Figure 3.3). Although the
observation periods are not identical (ALOS; Oct. 2006 - Jan. 2011, RADARSAT-1;
Apr 2004 - Mar 2007), the trend of the deformation in the study area had been steady
according to the GNSS observation. Regarding the RDF data set, 12 data with a
relatively long perpendicular baseline compared to the critical baseline were rejected

due to inadequate coherence (Figure 3.3).
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Table 3.1: Specifications of used data sets
Data set AA AD RDF RDS
Satellite ALOS RADARSAT-1
Wavelength 23.6 cm (L-band) 5.6 cm (C-band)
Flight direction Ascending (A) Descending (D)
Mode FBS / FBD Fine Standard
Incidence angle 39° 44° 22°
Spatial resolution 4m x9m (FBS)/17 m (FBD) 6mx 10 m 6mx32m
. . 2007/01/15 2006/10/16 2004/04/22 2004/07/23
Observation period
2011/01/26 2010/09/11 2007/03/14 2007/01/21
24 19 32
Number of data 23
(FBD: 11) (FBD: 1) (Rejected: 12)
Critical baseline 14,000 m (FBS) / 7,000 m (FBD) 5,800 m 1,100 m
3000 __ 1500
E L £ oo
2o f 2 * g =
g 1000 & || g 500 - . ’
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Figure 3.3: Baseline configurations of the used data sets (Table 3.1) of ALOS (left)
and RADARSAT-1 (right). A large absolute value of a perpendicular baseline means
a bad condition for interferometry due to spatial decorrelation (Zebker and Vil-
lasenor, 1992). Note that RDS is much more vulnerable to a long perpendicular
baseline due to the much shorter critical baseline than the other data sets (Table 3.1).
Circles indicate a common single master used in the PSI processing for each data
set. Black frame borders of the symbols in ALOS indicate FBD data, while symbols
without the border are FBS data. Cross marks in RDS represent rejected data due to
too long perpendicular baselines.

3.2.3 Method

I applied PSI using Stanford Method for Persistent Scatterers / Multi-Temporal

InSAR (StaMPS/MT]I) software (Hooper et al., 2007; Fukushima, 2010). Main pa-
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rameter settings are common for all four data sets and as follows. A threshold of
amplitude dispersion to select PS candidates is 0.4, which is the standard value. A
threshold of phase standard deviation to remove PS candidates with large noises is
0.7 as a result of trial and error. The identified PS points were not downsampled.
Phase ramps caused by orbital errors were removed by using GNSS data except for
at H points (Kobayashi et al., 2011). Tropospheric noise reduction using a numeri-
cal weather model provided by Japan Meteorological Agency (JMA) was applied to

ALOS data (Kobayashi et al., 2014).

3.3 Results and discussion

3.3.1 Mean LOS velocity

Estimated mean LOS velocities of the four data sets show a common signal; LOS
extension in the southeast area (Figure 3.4). These results are consistent with the
results of other ground observations such as GNSS and leveling. The AA data set,
whose observation is only from west, shows smaller LOS extension than the others.
This is because westward deformation which has been detected by GNSS has an
effect to cancel out the LOS extension caused by the subsidence for an observation

from west.

3.3.2 Density of PS points

Figure 3.4 shows that the density of the PS points varies substantially among
the data sets and areas. I computed the density of the PS points in an urban area, a

mountainous area, and a broad area for each data set (Figure 3.1, Table 3.2). I also
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Figure 3.4: Distribution maps of the estimated mean LOS velocity at identified PS
points. Long arrows indicate flight direction of the satellite, while short ones indicate
beam direction. Circles and their colors represent locations of GNSS continuous
observation points and their LOS velocity observed by GNSS, respectively. Squares
indicate the reference point; 23th H point.

computed a ratio of spatial resolution of the data to the RDF data set because it is
expected that the density of PS points depends on inherent spatial resolution of the

data.

According to Table 3.2, the urban area has higher density (200-1500 km~2) than
the broad area for all data sets. The ratio of RDS to RDF (both are C-band) in
the urban area is comparable to the ratio of the spatial resolution, implying that the

density of PS points is basically proportional to the inherent spatial resolution of used
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Table 3.2: Density of PS points (km~2) and ratios of spatial resolution to RDF data
set. Numbers in parentheses are ratios of density of PS points to RDF data set.

Data set AA AD RDF RDS
a (Urban) 1180 (1.4) | 1443 (1.7) | 840 (1.0) | 210 (0.3)
b (Mountains) 82 (3.3) 237 (9.5) | 25(1.0) 0(0.0)
¢ (Broad) 266 (1.5) | 568 (3.2) | 178 (1.0) | 35(0.2)
Ratio of spatial resolution 1.2 1.6 1.0 0.3

data. Although the L-band data sets have higher density than the C-band data sets,
the ratio is almost proportional to the resolution. These facts suggest that the density
of PS points in urban areas dominantly depends on the spatial resolution of the data,
without dependence on the wavelength. This is probably because buildings which

are regarded as PS points in an urban area are stable scatterers for all wavelength.

In the mountainous area, the L-band data sets clearly have higher density than
the C-band data sets. Figure 3.5 shows the distribution of the PS points on various
land conditions. On areas without vegetation, all data sets including C-band have PS
points. On the other hand, on tea gardens, there are almost no PS points for C-band,
whereas L-band have more or less. These facts indicate that L-band has an advantage
in vegetated areas like a tea garden. It has to be noted that, however, L-band cannot
identify PS points in all vegetated areas, as no PS point is seen in tree areas even in

L-band (Figure 3.5).
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Figure 3.5: Distribution of PS points (circles). Green surface with narrow paths
represents tea gardens. While there are many PS points at buildings for all data sets,
ALOS also finds out many PS points on tea gardens. There is no PS point in areas
with trees among all data sets.

3.3.3 Measuring precision of an individual PS point

As mentioned in Section 2.2, an observed differential phase at a PS point is com-

posed of several components,

5¢ — 5¢defo + 6¢topo + 5¢orb +5¢atm + 5¢noise' (21)
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Here a deformation signal 5¢%™ is decomposed into three in terms of a spatial scale,

S ¢def0 =4 ¢def0,broad +6 ¢defo,local +0 ¢def0,p0int’ (31)

where 6¢9bad j5 3 broad component such as interseismic deformation, ggdefoloca!
is a local component such as subsidence, and §¢%™P°nt j5 pointwise component such
as deformation of a building. In a narrow area (< 1 km), ggdefobroad - 5pam and 5p°r®
are small enough to be ignored. §¢'°P° can be removed precisely in the processing of

PSI (Ferretti et al., 2001). Hence, in a narrow area, 6¢ can be rewritten as

5¢ ~ 5¢def0,10cal + 5 ¢def0,p01nt + 5 ¢n01se’ (32)
and the variance is
2 2 2 2
0-6¢ =~ 0-5¢defo,local + 0-5¢defo,poim + 0-6¢noise’ (3-3)

where o, 1s the standard deviation of 6¢. Therefore,

T groine S Tago (3.4)
and in an area where §g%™1°¢l and §gdefoPoint are very small,

T grove X T (3.5)

Consequently, (the maximum of) the measuring error of an individual PS point can
be estimated from the standard deviation of the differential phases at PS points in a

narrow area.
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Figure 3.6: Radii within which there are 30 PS points around each H point.

Here I computed the standard deviation of unwrapped differential phases of 30 PS
points around each H point for each data set. 30 PS points are mostly located within a
500 m radius from each H point, which means that Equation (3.2) holds (Figure 3.6).
Moreover, since no localized subsidence is seen from the PSI results around all H

points and it is unlikely that much pointwise deformation exists, Equation (3.5) holds.

The computed o, are mostly 8-11 mm for ALOS and 2-3 mm for RADARSAT-
1, roughly proportional to the wavelength (Figure 3.7). It is natural because the same
precision in a unit of phase (rad) leads to higher precision in a unit of length (mm)
for a shorter wavelength (Sandwell et al., 2008). Several points with larger o4 than
3 mm in C-band would be caused by a contribution of long wavelength components
(ogdetobroad " spatm and §¢°™) because these points have a large radius of the used 30
PS points (Figure 3.6).

The estimated measuring error of an individual PS point represent a limit of a
detectable amount of deformation from a measurement at a PS point. These results
indicate that the shorter wavelength like C- and X-band is more suitable for infras-

tructure monitoring which needs pointwise information of deformation.
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Figure 3.7: Phase standard deviations of PS points around each H point.

3.3.4 Measuring accuracy of spatially averaged PS points

Measurement accuracy of PSI is estimated by comparing with the results of
GNSS at H points. Here I have averaged the deformation at 30 PS points around
each H point as the deformation observed by PSI, in order to evaluate a capability
of detecting deformation with some spatial extent, and compared with the projection
of the GNSS three dimensional deformation onto the LOS direction. A root mean
square error (RMSE) between PSI and GNSS represents the error of PSI if GNSS
has no error. In reality, GNSS also has some errors, so the RMSE is regarded as the

maximum of the error of PSI.

Figure 3.8 shows that the computed RMSE are approximately 4-6 mm except for
the RDS data set, independent to the wavelengths, at 13th-22th H points which are
located within 10 km from the reference point (23th H point). At farther H points
from the reference (1st-12th), the RMSE tend to increase. This is probably because
the farther points are affected by noises with long wavelength such as atmospheric

noises. The reason why the only RDS data set shows a different pattern is the PSI
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Figure 3.8: RMSE of LOS displacement between PSI observations and GNSS obser-
vations at each H point.

result at the reference is contaminated by some noises, for the radius of used 30
PS points is relatively large (~ 600 m) at the reference point (23th) according to

Figure 3.6.

In the comparison of the mean LOS velocity between PSI and GNSS, all data sets
except AA show high correlation (Figure 3.9, Table 3.3). The low correlation of the
AA data set is due to small LOS displacement resulting from the opposite viewing
direction to the others’ (Section 3.3.1). The RMSE are approximately 2 mm/yr except
for RDS data set, and the L-band is comparable to the C-band. The reason why the
RMSE of the RDS data set is large is also probably caused by the noises at the
reference point, as mentioned above. Consequently, spatially averaging neighboring
PS points can reduce noises of individual PS points even for L-band, and L-band is
suitable for detecting deformation with some spatial extent, also from the view point

of achievable density of PS points (Section 3.3.2).
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Figure 3.9: Correlations of mean LOS velocity between PSI observations and GNSS
observations.

Table 3.3: Correlation coefficients and RMSE of mean LOS velocity between PSI
observations and_GNSS observations.
Data set AA | AD | RDF | RDS

Correlation coefficient | 0.34 | 0.84 | 0.92 | 0.64
RMSE (mm/yr) 1.80 | 2.29 | 1.63 | 3.43

3.4 Conclusions

PSI results of different radar wavelengths were compared; L- and C-band. Den-
sity of identified PS points depends on spatial resolution of the used data in urban
areas. L-band has a better capability to detect PS points in vegetated areas than C-
band. Measuring precision of an individual PS point is 8-11 mm for L-band and
2-3 mm for C-band, almost proportional to the wavelength. This suggests that the
shorter wavelength is more suitable for pointwise usage such as infrastructure mon-
itoring. Measuring accuracy of spatially averaged 30 PS points are 4-6 mm and
approximately 2 mm/yr, being independent of wavelength, according to the com-

parison with continuous GNSS observation results. This implies that L-band has a
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comparable capability of detecting spatially distributed deformation to C-band.



Chapter 4

Subsidence over pasture on drained

peat soils

4.1 Mechanism of shallow subsidence of peat soils

In some countries, peat forms a major soil type for dairy farming and is there-
fore economically valuable (Montanarella et al., 2006). Peat is composed of organic
materials which oxidize and emits greenhouse gases such as CO, and methane when
exposed to the air (Bartlett and Harriss, 1993; van Huissteden et al., 2006). Oxidation
of peat soils results in volume reduction and subsequent subsidence. As a result, a
thickness of a vadose zone decreases, as a land surface gets closer to a phreatic zone
or groundwater level. Consequently, to keep the land sufficiently dry for agricultural

use, the soil needs to be drained, resulting in an increased vadose zone thickness, in

26
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more oxidation, and therefore more subsidence (Schothorst, 1977; Hoogland et al.,
2012). This loop is bound to continue until the peat soils have disappeared com-

pletely.

4.2 Drained peat soils in the Netherlands

In the Netherlands, peat soils cover approximately 2800 km?, almost 10% of the
total land area (Figure 4.1). Most soils are drained, fertilized and used as pasture
land for agriculture (also called peat meadow). About 30% of the pastures in the
Netherlands is situated on drained peat soils (Langeveld et al., 1997).

Along with sea level rise and tectonic subsidence, one-third of the land in the
Netherlands is situated below sea level (Hoogland et al., 2012). Global warming
will accelerate the sea level rise and peat oxidation, resulting in more subsidence and
increased flooding risks. Water management is important to control peat oxidation,
leading to delay or stop of subsidence. However drainage is required for agricultural
use, hence it is a difficult trade-off problem. Accurate deformation data of subsidence
would greatly contribute to optimize the water management solution.

Peat soils are also subject to reversible elastic volume changes because of fluc-
tuations in groundwater levels between summer and winter, which causes annual

vertical displacement (Schothorst, 1977; Nieuwenhuis and Schokking, 1997).

4.3 Past studies

Measuring subsidence rates in pasture on drained peat soils is difficult with con-

ventional geodetic means as soft soils make it impossible to install fixed benchmarks
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Figure 4.1: Soil map of the Netherlands (back ground image from Wageningen UR
(2006)). Solid black lines and dashed lines indicate the target area (Section 4.4) and
coverage of used SAR data (Table 4.1) in this thesis, respectively.

for repeated surveying. Soil subsidence rates in these areas have been estimated to
range between extremes of 2 and 51 mm/yr, with common values between 5 and
15 mm/yr (van Huissteden et al., 2006). These values, however, are not reliable and

based on models or incidental measurements. Although Hoogland et al. (2012) pre-
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sented a subsidence model in a polder on peat soils near Amsterdam in the Nether-
lands, inputs of the model, peat thickness derived from soil surveys and elevation
data measured by leveling and airborne lidar, suffer from large measurement errors.
Nieuwenhuis and Schokking (1997) estimated subsidence rates in drained peat ar-
eas of the Province of Friesland, northern part of the Netherlands. However, the
used leveling data were spatially limited along particular utility lines. Moreover, as
the observed seasons of leveling are hardly unknown, unconsidered annual vertical

fluctuations of the ground badly affect the estimated subsidence rates.

InSAR is a solution to monitor the subsidence successfully because fixed ground
control points need not be installed. However, there is a critical problem; temporal
decorrelation. Conventional InSAR techniques cannot obtain adequate coherence

due to the very fast temporal decorrelation over pasture.

Cuenca and Hanssen (2007) studied displacement in the western part of the
Netherlands by PSI from 1992 to 2005. Annual fluctuations with the amplitude of
about 3 mm were detected in peat meadow areas; the ground surface gets highest at
23 August, delayed 1-2 months with respect to the ground water level fluctuations.
The estimated subsidence rate of about 2 mm/yr is smaller than expected by other
previous studies. A possible cause of the underestimation is that scatterers detected
as PS are mainly man-made structures, which have deep foundations reaching to a
stable layer to avoid subsidence (Figure 4.2). This implies PSI is not suitable to

detect shallow subsidence of peat soils.
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Stable layer Stable layer

Figure 4.2: Possible cause of underestimated displacement of PSI.

4.4 Target area

A 16 km x 13 km area south of Delft, the Netherlands, is the target area in
this study (Figure 4.3). The center of the area is widely covered with pasture (Fig-
ure 4.4). In order to distinguish the pasture area from the other types of land coverage,
Normalized Difference Vegetation Index (NDVI) derived from Moderate Resolution
Imaging Spectroradiometer (MODIS) is used (Huete et al., 2002). The NDVI indi-
cates a concentration of green plants; the higher it is, the denser the vegetation is.
Figure 4.5 shows the average of NDVI from 2003 to 2011, whose spatial resolution
1s 250250 m and temporal resolution is 16 days. The area where the NDVI is higher
than 0.7 is regarded to be pasture, consistent with visible classification according to
the aerial photography (Figure 4.3). This area is selected as the target because there
are plenty of SAR data acquired by different satellites with different wavelengths

(Table 4.1).
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Table 4.1: Used data sets in this thesis
Satellite ALOS ERS-1 (Ice Phase) Envisat
Subscript i ii i ii -
A (mm) ? 236 236 56 56 56
dt (day) ® 46 46 3 3 35
Bt (m) € 7000 (FBD?) / 14000 (FBSH 1100 1100 1100
Par X Pazi (M) 4| 17x4 (FBD) / 9x4 (FBS) 23%5 23%5 23%x5
N/L*® 2.86 (FBD) / 1.43 (FBS) 1.49 1.49 1.51
Flight direction | Ascending Ascending  Ascending  Ascending Descending
6 (deg) 37.0 39.2 25.0 25.0 243
Path number 650 651 15 15 423
Polarimetry HH HH \'AY \'AY \'A%
Start date 2007/03/05  2006/12/20  1992/01/29 1993/12/25 2003/02/12
End date 2011/03/16  2011/02/15  1992/03/29 1994/04/09 2010/10/13
10 (FBD) 10 (FBD)
# of scenes 20 34 75
11 (FBS) 11 (FBS)
Satellite RS2 (RADARSAT-2) TSX (TerraSAR-X)
Subscript HH HV A D
A (mm) 56 56 31 31
dt (day) 24 24 11 11
Byit (m) 1300 1300 5400 3800
Per X Pazi (M) 24x7 247 2.5%2.5 2.5%2.5
N/L 1.64 1.64 1.51 1.63
Flight direction | Descending Descending Ascending Descending
0 (deg) 32.7 32.7 39.0 24.0
Path number 102 102 25 48
Polarimetry HH HV HH HH
Start date 2010/06/13  2010/07/31 2009/04/06  2009/04/08
End date 2012/06/02  2012/06/02 2012/04/10 2012/04/12
# of Scenes 30 28 79 85

aRadar wavelength  °Repeat interval € Critical baseline

d Spatial resolution of ground range X azimuth

¢ Oversampling ratio ' Incidence angle at the center of the area
¢ Fine Beam Dual polarization " Fine Beam Single polarization
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Figure 4.3: Target area (Image Google Earth). The yellow polygons indicate the
boundary of pasture and the other types of land coverage based on NDVI (Figure 4.5).
The green pasture delineated by the polygon is clearly visible between the cities of
Delft and Schiedam (red squares), to the north and the south of the area, respectively.

Figure 4.4: Ground view of the pasture area, showing the drainage canals and the
approximate depth of the vadose zone.

4.5 Results of InSAR and PSI

I processed interferograms with various time intervals and wavelengths (Fig-
ure 4.6). Although interferograms with the shortest time interval (left column) show

coherent differential phases all over the area except water surfaces, coherence is
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Figure 4.5: Averaged NDVI in the target area, with a similar crop as in Figure 4.3.
The areas where the NDVI is 0.7 or higher are regarded as the pasture area in this
thesis.

rapidly lost with time in the pasture area even in L-band. This means that tem-
poral decorrelation is quite severe and conventional InSAR is unable to provide a
significant signal of the long term subsidence.

I also applied InSAR time series analysis using StaMPS/MTT software (Hooper
et al., 2007; Fukushima, 2010). Figure 4.7 shows the results of PSI, clearly showing
that it is not possible to retrieve deformation estimates in the pasture area using PSI
for any bands, due to the absence of long-term coherent scatterers. Only lineated fea-
tures related to buildings are visible, but due to their particularly deep foundations,
these may not be representative of the shallow subsidence in the peat areas as men-
tioned in Section 4.3 (Cuenca and Hanssen, 2007). Furthermore, the results of SBAS
approach and combined approach of PSI and SBAS by StaMPS/MTI (Hooper, 2008)

showed insignificant improvement in terms of distribution of PS in the pasture area.
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Figure 4.6: Interferograms with different time intervals and wavelengths (rad,
wrapped, radar coordinate). Interferograms with the shortest time interval (left col-
umn) show coherent differential phases all over the area except water surfaces. Co-
herence is rapidly lost in the pasture area as the time interval increases for every
wavelength, while adequate coherence is kept in the surrounding urban area.
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Figure 4.7: LOS velocity (mm/yr) estimated by PSI. Positive values mean subsi-
dence. The center of the area delineated by the polygon with few PS corresponds to
the pasture. While the middle west part (greenhouse area) shows slight subsidence,
no significant deformation is detected in the other area.
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5.1 Introduction

As shown in Section 4.5, temporal decorrelation is the main problem for InSAR
measurements over pasture land. From a radar perspective, pasture land consists
of distributed scatterers (DS) (Bamler and Hartl, 1998), from which interferometric
information can be obtained —if necessary after multilooking— unless the area is
decorrelated completely. In other words, DS can be exploited only if the minimum
temporal sampling interval, i.e., repeat orbit, is significantly shorter than the decor-
relation time. The decorrelation time depends on the wavelength of the radar and on

the reflective characteristics of the area (Zebker and Villasenor, 1992).

For the last 25 years, spaceborne L-, C- and X-band SAR data have shown that
temporal decorrelation increases with higher frequencies (Rosen et al., 1996; Parizzi
et al., 2009; Wei and Sandwell, 2010). However, parameters of a generic temporal
decorrelation model are unknown because properties of scatterers vary widely de-
pending on the land use and the vegetation type. In order to estimate detectability
of surface deformation using past, present and future satellites, it is important to as-
sess the temporal decorrelation quantitatively, for the specific class of the land use.
Here I analyze the temporal decorrelation in a peat meadow using data of ALOS,
European Remote-Sensing Satellite 1 (ERS-1), Environmental Satellite (Envisat),
RADARSAT-2 (RS2) and TerraSAR-X (TSX), which have different wavelengths

and/or temporal sampling intervals.
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First, a general concept of coherence is briefly described in Section 5.2. In Sec-
tion 5.3, an advanced model for the temporal decorrelation is presented, using three
specific parameters. The parameters are empirically estimated in Section 5.4 for all
available satellite SAR sensors in the target area, followed by conclusions in Sec-

tion 5.5.

5.2 Coherence

Coherence is used as a measure of similarity of phases between two SAR images
forming a interferogram. Complex coherence y between two complex stochastic

values y; and y, at the same location in two coregistered SAR images is defined as

Y= E{yiy3} , 5.1)

E{ly: PYE{Iy2I*}

where E{-} is the expectation operator and y; is the complex conjugate of y, (Bamler
and Hartl, 1998; Hanssen, 2001). It is not possible to calculate y per pixel, as there
is only one observed value y; and y, per pixel in the respective images, and therefore
their expectations are not known. Alternatively, coherence estimator ¥ is calculated

under the assumption of ergodicity by spatially averaging over N neighboring pixels,

ZnNzl ylny;n
\/2;11\/:1 |y1n|2 ZnNzl |yZn|2

7 = le = (5.2)

where ¢ is corresponding to a multilooked differential phase. Practically, the absolute
value [y] is often used and simply referred to as coherence. In this thesis, I also use

coherence as the absolute coherence estimator |y|, while theoretical coherence as the
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original absolute coherence |y|. The coherence ranges between O and 1, where a
higher value denotes higher correlation, i.e., the phase is coherent and precise. If the
coherence is used as a criterion for detectability of surface displacement, a systematic

(linear) phase component ¢, in a estimation window should be removed by

91— | 1 YinYs, €XP(—jn)l
VP Z byl

(5.3)

Note that the estimated coherence has a bias with respect to the theoretical coher-

ence. The expectation and the variance of the coherence are derived as

T'(IHI'(3/2
E{l) = F((L)+—(l//2)) G L LL+ 12 LA =D (G4
and
ML) )
7= | i P2 LLL s LI = P - ERE. 65)

respectively, where I'(-) is the Gamma function, ,F,(a; b; z) is the Generalized hyper-
geometric function and L is the number of independent samples (Touzi et al., 1999;
Hanssen, 2001). Figure 5.1 shows that the lower the theoretical coherence value, the
greater the bias is. Larger L, i.e., using a larger coherence estimation window reduces
the bias and the variance of the coherence at the expense of resolution. Note that L
is lower than N because a resolution cell is generally larger than a pixel in an image

due to oversampling of SAR images (Hanssen, 2001). The ratio N/L is given by

N/L = X —, (5.6)
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Figure 5.1: Expectation of coherence |y| as a function of theoretical coherence |y|
and the number of independent samples L. Error bars denote the standard deviation
of the coherence 0.

where p,,; and p,, are the spatial resolution of azimuth and ground range, and A,,; and
A are pixel spacing of azimuth and ground range, respectively (Swart, 2000; Laur
et al., 2002). For example, N/L for ERS is approximately 1.5 (Table 4.1). Since
resolution is inversely proportional to bandwidth, applying spectral filtering reduces

the resolution (Gatelli et al., 1994).

Decorrelation is induced by several sources, such as spatial decorrelation yqpy;,
volume decorrelation y,, thermal noise yierm, Processing €rrors ¥proc, and tempo-
ral decorrelation yi.mp (Zebker and Villasenor, 1992; Hanssen, 2001). Since these

decorrelation sources are multiplicative, the total coherence is given by

h/l = VYspat * Yvol * Ytherm * Yproc * Ytemp- (57)

The objective of this chapter is a quantitative assessment of the temporal decorrela-

tion. Hence, the other decorrelation sources need to be excluded from the calculated
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coherence. The spatial decorrelation is small if the perpendicular baseline of the in-
terferometric pair is short and spectral filtering is applied. Since our target area is
pasture with no trees, the volume decorrelation is assumed to be negligible. yperm 1S
greater than 0.99 for all sensors used in this thesis according to their reported Noise
Equivalent Sigma Zero values (NESZ). ¥, mainly caused by interpolation (resam-
pling) and coregistration inaccuracies, is considered greater than 0.95 by applying an
appropriate interpolation kernel and with better coregistration accuracy than 0.1 res-
olution cell (Hanssen, 2001). Consequently, the contribution of these decorrelation
components is considered to be relatively small compared to the temporal decorrela-

tion component.

5.3 Temporal decorrelation model

Temporal decorrelation results from changing physical properties of scatterers
between acquisitions. Sudden and complete changes, e.g., due to cultivation or snow
fall, are impossible to model. Therefore I assume that there are only gradual and
natural changes. If motions of all scatterers in a resolution cell are independent and

equally distributed, the temporal decorrelation can be expressed by

1 (4x\
el 5 )

where A is the radar wavelength and o is the variance of the motion of the scat-
terers along LOS (Zebker and Villasenor, 1992; Rocca, 2007; Lavalle et al., 2012).
Whereas o, is zero if the two acquisitions are co-instantaneous, it would be nonzero

due to, e.g., perturbation by wind if there is a time lag of even a few seconds (Lavalle
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etal., 2012). Additionally, the variance smoothly increases with time because of veg-
etation growth (Rocca, 2007). Then I assume that the variance has two components;

a near-instantaneous short term component o, g,y (mm) and a time dependent long

term component o jone (Mm - day™ 1/ 2)
2_ 2
g, = O-r,short + O-rlong . (59)

O rlong becomes a dominant source of the temporal decorrelation as time goes on,
whereas 0, short 1S dominant only for a very short time interval. Since the time interval
is three days or longer for repeat pass spaceborne SAR used in this study, I focus only

on the long term component. From Equations (5.8) and (5.9), I obtain

Ytemp(t) = Ytshort e_t/T’ with (5.10)

Yishort = €XP (__ ( 1 ) rshort) , and (5.11)
A

T= (—) (5.12)
rlong 4n

where I refer to T as decorrelation rate. Equation (5.12) implies that 7 is proportional
to A%, which means that 7 for L-band would be 18 times larger than 7 for C-band, and

7 for C-band would be three times larger than 7 for X-band.

As a model for the total coherence, in combination with the other decorrelation

sources, I use

It = yo - e, (5.13)
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where vy is initial coherence, defined as

Y0 = Yothers * Vishorts With (5.14)

Yothers = Yspat * Yvol * Ytherm * Yproc- (515)

Note that this model is not for the coherence estimator ¥ but for the theoretical co-
herence. As zero coherence will never be observed even in a completely decorrelated
area due to (i) the bias in the coherence mentioned in the previous section, and (ii) a
possibility of presence of persistent dominant point scatterers in the coherence esti-

mation windows, I modify the temporal decorrelation model Equation (5.13) to

—t/T

P10 = (Yo = Yeo)e™" + Voo, (5.16)

following Parizzi et al. (2009), where long term coherence vy, representing the min-
imum attainable coherence value, or the value to which observed coherence will
converge over time, is introduced. Whereas 7 in Equation (5.13) is the time for the
coherence to drop down to 1/e of its initial value, 7 in Equation (5.16) is its equiv-
alent for |y| — y». This means that not only vy, and 7 but also vy, need to be taken
into account when the temporal decorrelation behavior is discussed. In the following

I will estimate and analyze these parameters.
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5.4 Parameter estimation at target area

5.4.1 Preliminary parameter estimation

Nine data sets with three different frequency bands are available in the target
area (Table 4.1). All images were coregistered to a single master image per data set.
Since Envisat and TSX have a large number of images (> 70), interferometric pairs
with a longer time interval than 400 days for Envisat and 100 days for TSX were not
processed. In order to mitigate the effect of the spatial decorrelation, spectral filtering
was applied in both range and azimuth (Gatelli et al., 1994). Then, topographic phase
components at every pixel for all interferograms were computed from SRTM DEM
and geocoding was implemented. These processing steps were performed using Delft

object-oriented radar interferometric software (Doris) (Kampes et al., 2003).

Coherence estimation windows were defined based on geographical coordinates,
rather than common radar coordinates, to ensure the same location of the computed
coherence values among different data sets; the location of the windows are geo-
graphically the same among different data sets (Figure 5.2). To detect subtle changes
of low coherence, bias of the coherence must be small, hence, size of the coherence
estimation windows should be large enough. Here I chose the minimum number of
300 independent samples per estimation window. Given the oversampling ratios (Ta-
ble 4.1), for the poorest resolution (RS2), this is equivalent to about 500 pixels, or an
area of about 230 m X 230 m. In this case the bias of the coherence is less than 0.06
which is small enough. By fixing this ground dimension of the window (instead of

the amount of samples per window) it is guaranteed that the coherence properties of
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Figure 5.2: Example of configuration of coherence estimation window based on (a)
radar coordinates (b) geographical coordinates. Red and blue grids represent pixel
structure of a SAR image of ascending and descending, respectively, whose spatial
resolution and orientation are different. Bold lines (red and blue in (a) and black
in (b)) indicate frames of coherence estimation windows. Grids filled with color
are pixels inside of the window. In the case of a common boxcar window based
on radar coordinates (a), the areas covered by the windows are mismatched among
different data sets because of different spatial resolution or orientation. Based on
geographical coordinates (b), the locations of the pixels covered by the window are
almost identical.

the same land area among different data sets is evaluated. Since RS2 has the poorest
resolution, it is also guaranteed that the bias of the coherence is lower than 0.06 for
the other data sets.

Figure 5.3 shows the calculated coherence which is the averaged value among all
(nonoverlapping) coherence estimation windows over the pasture for all computed
interferometric pairs. Diagonal elements have the coherence value of one as is ob-
vious. While off-diagonal elements near the diagonal elements have relatively high
values, there are very low values far from diagonal elements, which implies the co-
herence decreases with time.

Figure 5.4 is a different expression of Figure 5.3, clearly showing acquired sea-
sons and time intervals. The coherence value is expressed by hue (color), whereas

the ratio between the perpendicular baseline and the critical baseline (B, /Be;) is
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Figure 5.3: Coherence matrices in the pasture area. The numbers indicate the ordinal
number of the acquisitions. Data are sorted by acquisition date. Diagonal elements
have a value of one.

indicated by the brightness of the color. This helps in the interpretation, as inter-
ferograms with a large baseline ratio tend to have relatively low coherence due to
spatial decorrelation even though the time interval is very short and spectral filtering

is applied (Hanssen, 2001).

From the ERS 3-day repeat data sets (Figures 5.3(c)(d) and 5.4), it is evident that
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Figure 5.4: Calculated coherence in the pasture area. Hue and brightness represent
the average of the coherence in the pasture area and the ratio between the perpen-
dicular baseline and the critical baseline (B, /B.;) of the interferogram, respectively.
Note that the spectral filtering in range and azimuth has been applied. Colors on the
horizontal axes (df = 0) do not represent coherence but seasons (Apr-Sep: brown,
Oct-Mar: blue).
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the coherence decreases with time. For all data sets, interferograms only with a short
time interval show a relatively high coherence, which implies that the scatterers in
the pasture decorrelate quickly. Whereas L-band (ALOS) has adequate coherence
throughout the year for a short time interval, C- and X-band (Envisat, RS2 and TSX)
can obtain adequate coherence only during winter, with very low coherence during
summer. Unfortunately, it is not possible to derive empirically whether a shorter
repeat interval would yield a higher coherence using C-band during summer due to
absence of 3-day repeat data during summer. In a comparison of polarimetry, RS2-

HH shows slightly higher coherence than RS2-HV.

It seems that the temporal decorrelation behavior is not constant through the year
but depends on seasons. I set up three data sets on the basis of acquisition date, i.e.,
1) All dates, 2) Apr-Sep ('summer’), and 3) Oct-Mar (’winter’) in order to compare
seasonal effects. Interferograms with B, /B.; > 1/3 were discarded to avoid the
effect of spatial decorrelation. The two available data sets for ALOS, ERS and TSX,
respectively, were integrated into one data set to make the parameter estimation more
robust. Then, the three model parameters vy, Y. and 7 in Equation (5.16) were
estimated for each data set at each coherence estimation window in a least-squares

sense.

Figures 5.5 and 5.6 show maps of the estimated temporal decorrelation model
parameters and the time dependency of the coherence for the ERS data set. It is clear
that the temporal decorrelation behavior depends on the land use. An urban area (A)
tends to have a higher vy, and vy.,, whereas a pasture area (B) has a very low y.,, simi-
lar to a water area (C) where no coherent signal can be obtained. These indicate that

the urban area can keep adequate coherence semipermanently, whereas the pasture
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Figure 5.5: Maps of the estimated temporal decorrelation model parameters vy, Yo
and 7 for the ERS 3-day repeat data set. Areas (A), (B) and (C) indicate an urban
area, pasture area, and water area, respectively.

area gets almost completely decorrelated sooner or later. An interpretation of decor-
relation rate 7 is less straightforward. In fact, T can be shorter in an urban area than
in a pasture area because y., remains very high in an urban area. Since the coherence
in a pasture area decays exponentially (Figure 5.6 (B)), it seems that Equation (5.16)

can adequately represent the temporal decorrelation behavior in the pasture area.

Figure 5.7 is a set of histograms of the estimated parameters in the pasture area.
Seasonal dependence is seen in yy and 7, not in Y. Y only for ERS have higher

peak (0.15 — 0.2) than the bias of the coherence (~0.05) because of the lack of the
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Figure 5.6: Estimated coherence (black dots) and time dependency of the estimated
temporal decorrelation models (solid lines) at three different type of land use for the
ERS data set. Locations of the points are plotted in Figure 5.5.

completely decorrelated interferograms, i.e., long time intervals. 7y, for the other
satellites are almost equal to the bias of the coherence, implying the pasture area gets

almost completely decorrelated regardless of seasons.

Figure 5.8 shows time dependency of the estimated temporal decorrelation model.
One of the reasons why the coherence for C-band is higher than X-band is that the
bias for C-band is larger than for X-band, resulting from the lower resolution of C-
band. Therefore the magnitude of the coherence should not be solely focused on, but
mainly on how it decays and converges. Since the pasture area seems to get decor-

related almost completely at a sufficiently long time interval, the speed of temporal
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Figure 5.7: Histograms of the estimated parameters Y, Y and 7 for the three time
epochs in the three columns. Both y, and 7 tend to be higher during Oct-Mar than
during ALL and Apr-Sep, which implies that the temporal decorrelation is slower
in winter than in summer. The values of y., are comparable with the expected bias
of the coherence and decrease with the resolution of the sensor. 7y, seems to be
underestimated for all data sets except ERS due to lack of the short time interval
data whereas vy, for ERS is reasonable. Note that the ERS 3-day repeat data are only
available during winter periods.

decorrelation can be simply evaluated by 7. ALOS has the longest 7 and TSX the
shortest, as expected (Figure 5.7). The winter months (Oct-Mar) show a larger vy,
and 7 compared with summer (Apr-Sep) and the entire year (ALL), which implies
that the temporal decorrelation is slower in winter. During summer (Apr-Sep) I ob-
tain almost a flat model for C-band (Figure 5.8 (Apr-Sep)) suggesting that a coherent

interferogram with the repeat interval of Envisat and RS2 is never obtained. In terms

of polarization, RS2-HH has a slightly larger y, and 7 than RS2-HV.
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Figure 5.8: Time dependency of the coherence for each data set calculated from
the median of the estimated temporal decorrelation model parameters in the pasture
area. The symbols and error bars indicate the median and the standard deviation of
the coherence at each time interval. To avoid clogging, a shadow region was used to
indicate the standard deviations of the ERS data in Oct-Mar.

5.4.2 Approximating vy,

From Figure 5.7 (Oct-Mar) it appears that only the 3-day ERS data shows rea-
sonable initial coherence y, of 0.5 — 0.8. All other satellites seem to significantly
underestimate y,. This is mainly due to the lack of the short term interferometric
combinations and the extrapolation to the zero day. Consequently, in order to es-
timate the temporal decorrelation behavior over time spans smaller than the repeat
interval of the satellites, it is needed to approximate y, via an alternative method.
According to Equations (5.11) and (5.14), vy depends on A, 0 short and Yothers- Since
the ERS data set has many coherent interferograms over short time spans, the esti-
mated vy, is expected to be the most reliable. Thus, I approximate y, for the other
data sets using 7y, for the ERS data set by assuming that o, o 1S constant for all data

sets at the same location. By inverting Equations (5.11) and (5.14), o can be

r,short

approximated by

0_/2 — 2 (/lERS )2 11’1 (’)/others, ERS ) (5 17)
r,short 4 T 'yO,ERS ’
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where {-}grs denotes the parameters for the ERS data set. Substituting Equation (5.17)
in Equations (5.11) and (5.14), the initial coherence 7, for the other data sets can be

approximated by

2
AERS )

YO.ERS )( v
Yothers, ERS

76 = YZ)thers ( s (5 18)

where {-}" denotes the parameters for another data set.

In an urban area, hardly affected by the temporal decorrelation, y, will approx-
imately equal to yomers- An average of yogrs among the coherence estimation win-
dows where y. grs is larger than 0.5 is 0.83. Therefore I conservatively assume
Yothers, ers = 0.83 for all coherence estimation windows. For the other data sets y,, . .
is also required to approximate ;. As it is not possible to estimate y,, - accurately,

I use the same value as the ERS data set.

/
r,short

Figures 5.9 and 5.10 show the approximated o and y; for the other wave-
lengths. X-band shows the lowest y; due to its high sensitivity to surface perturba-

tions. Given these updated and approximated initial coherence values 7, I recom-

puted the corresponding values for y., and 7 using Equation (5.16).

5.4.3 Results and discussion

Figures 5.11 and 5.12 are the recomputed results of Figures 5.7 and 5.8, respec-
tively. For all data sets, 7 is shorter than the previous results, see Figure 5.7. In
particular 7 for C-band during summer (Apr-Sep) is about ten days or less, which
implies that it was unlikely to obtain a coherent signal because the repeat intervals of
past C-band satellites are much longer. The Sentinel-1 mission, however, will be able

to satisfy this condition with its 6-day repeat interval with two satellites. RS2-HH
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Figure 5.9: Approximated o’ (mm) based on 7y, for the ERS data set.

r,short

i

(a) L-band (b) X-band

Figure 5.10: Approximated y;, based on the ERS based initialization. These are
comparable with the result of C-band in Figure 5.5a.

shows longer 7 values than RS2-HYV, similar to the former results.

For L-band the decorrelation rate 7 is considerably shorter than expected based
on the proportionality to A2, predicting a factor 18 between C- and L-band (Equa-
tion (5.12)). Nevertheless, the subplots of Figure 5.11 show that L-band has the
highest likelihood to obtain coherent signals regardless of seasons, and although the
repeat interval of ALOS (46 days) may be not short enough, ALOS-2 (14 days) will

surely be sufficient.
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Figure 5.11: Histograms of the recomputed 7, tuned using the approximated y;,. The
wavelength dependency is evident, as L-band data show significantly larger 7.
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Figure 5.12: Recomputed time dependency of the coherence, tuned using the approx-
imated ;. The symbols and error bars indicate the median and standard deviation of
the coherence at each time interval in the pasture area. To avoid clogging, a shadow
region was used to indicate the standard deviations of the ERS data in Oct-Mar.

During winter, X-band has longer 7 than expected, comparable to the repeat in-
terval of TSX. This could be due to the high resolution of TSX, which leads to a large
L and therefore a low bias in the coherence estimation. In other words, a larger mul-
tilook factor can be used compared to C-band. This means that a higher resolution
would increase the chance to exploit low-coherent DS. This hypothesis is supported
by the fact that Envisat with slightly higher resolution than RS2 has longer 7 than

RS2.

The models described here rely for the initial coherence vy, on the ERS result dur-
ing winter periods and the assumption that these results may be used to approximate

v for the missions with longer repeat orbits. It should be stressed that this assump-
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tion will fail if the coherence factors due to spatial decorrelation, volume decorre-
lation, processing noise and thermal noise differ significantly between the different
sensors. For pasture, however, it can be assumed these factors to be reasonably com-
parable. Secondly, the fact that the reference data from ERS were all acquired during
winter may positively bias the approximation of yy. Moreover, these ERS reference
data were all acquired during the early 1990’s, more than a decade before the other
data sets. Although some more urbanization may have occurred at the edges of the

pasture areas, the main area did not change in terms of land use.

To analyze the practical implication of these models, I estimated decorrelation
time, t4, using the estimated temporal decorrelation models. I define E{|¥}| + o3 at
ly] = O as a coherence associated with total decorrelation ¥4 calculated from Equa-
tions (5.4) and (5.5) for a given number of independent samples L. With |y| = $(L)

in Equation (5.16), I find

(5.19)

(L) = TIH(M)

V(L) = Voo

for every sensor. The relationship between t4 and L is shown in Figure 5.13. These
graphs show that in order to obtain a coherent signal during winter time (Oct-Mar), an
averaging window with L = 200 would be sufficient for all sensors. However, in sum-
mer C- and X-band would not provide significant information with L = 200, whereas
L-band can. Shorter repeat intervals or larger values of L are required. Sentinel-1,
whose repeat interval is six days with two satellites, would enable coherent signals
in summer with L = 50 or by averaging 20 X 4 pixels, assuming an oversampling rate

of 1.5, equivalent to an area of 80 x 80 m.
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Figure 5.13: Decorrelation time #4 as a function of the number of independent sam-
ples L (log scale) for each data set. Black bold parts of the lines indicate that the
repeat interval of the satellite is shorter than the decorrelation time, allowing for co-
herent observations. Gray bold parts indicate that the repeat intervals of the new
satellites, ALOS-2 for ALOS and Sentinel-1 for Envisat, are shorter than the decor-
relation time.

5.5 Conclusions

Given all available satellite SAR data, the decorrelation characteristics of pas-
ture on drained peat soils were investigated and temporal decorrelation models were
proposed for L-, C-, and X-band. The standard decorrelation model was extended
to three parameters, including the effects of instantaneous decorrelation, termed the
initial coherence, as well as the long-term coherence affected by the bias of the coher-
ence estimation. The estimation of the initial coherence is hampered by the lack of
the very short time interval interferometric combinations, producing a negatively bi-
ased result. This was solved by using C-band 3-day repeat interval data sets of ERS,
forward propagating the variance of the motion of the scatterers to the approximated
initial coherence for X- and L-band. Based thereupon, it was demonstrated that the
combination of the repeat intervals and the coherence estimation windows enable the
estimation of coherent signal over pasture on drained peat soils, particularly for the

new satellite missions ALOS-2 and Sentinel-1. Although longer wavelengths are ad-
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vantageous, it is the combination of longer wavelengths, shorter repeat intervals and

higher spatial resolution that increases the likelihood to obtain a coherent signal.
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6.1 Introduction

Chapter 5 revealed that pasture areas suffer from very quick temporal decorrela-
tion. Although an interferogram with a very short time interval can have a coherent
signal particularly in winter, it is not sufficient for a precise measurement of sub-
sidence because the short time interval means small displacement, i.e., low SNR.
SBAS, a useful technique to track a slow displacement using many coherent interfer-
ograms integrally, is not effectual either in this case because of too small available
coherent interferograms. Displacement detected by PSI is unlikely to represent sub-
sidence of peat meadow as mentioned in Sections 4.3 and 4.5. Consequently these
existing InSAR techniques including time series analysis such as PSI and SBAS are

not able to measure the displacement in the target area precisely.

Here I propose an approach to enhance the capability of SBAS in a quickly decor-
relating area by integrally using multisatellite data sets. Whereas other studies have
also proposed approaches to combine different data sets for improving the precision
and temporal coverage (Pepe et al., 2005; Ozawa and Ueda, 2011), I focus on a more
severely decorrelating area where the number of coherent interferograms is extremely
limited. I also propose a precise and efficient method to estimate complex coherence
using adjacent adaptive windows. I present the results in the target area covered with
pasture on drained peat soils where significant subsidence has been suspected but

could not have been detected by existing InSAR techniques.
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Section 6.2 is dedicated to the explanation of adaptive coherence estimation to
precisely estimate complex coherence. Basic and the advanced SBAS algorithms are
described in Section 6.3. I test the advanced method using real data over the pasture
on drained peat soils in the Netherlands in Section 6.4, followed by the result in

Section 6.5 and the conclusion in Section 6.6.

6.2 Adaptive coherence estimation

As mentioned in Section 5.2, the complex coherence is calculated by

ZQ]:] ylny;n

7 =15)e? = (5.2)

VS P B ol

Whereas homogeneity and ergodicity are assumed in this computation, in reality
both assumptions may not be valid because within the estimation window there may
be different pixels with different scattering characteristics, e.g., buildings, pasture
and water. Consequently, an estimated coherence and a multilooked phase would be
imprecise and biased.

One solution to estimate the complex coherence more precisely is the use of an
adaptive window in contrast to a common boxcar window. Recently, Ferretti et al.
(2011) proposed an algorithm to find statistically homogeneous pixels (SHP) based
on amplitude statistics of a pixel evaluated over time series. Whether two specified
pixels are SHP or not is evaluated by a goodness-of-fit testing. It was reported that
the Anderson-Darling test (Pettitt, 1976; Scholz and Stephens, 1987) is the most
appropriate test if a sufficiently large number of SAR images are available (Parizzi

and Brcic, 2011).
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The Anderson-Darling test can be performed for all pairs of pixels to preserve
full resolution. However, when the area is large and/or the resolution is high, the
computation time becomes infeasibly long. If the full resolution is not required, the
computation time can be saved at the expense of resolution.

Firstly I allocate adjacent rectangular windows without overlapping. Given the
incoherent average of amplitude over all acquisitions, I select a pixel closest to the
median value over the window as a reference pixel for that window. Its scatter-
ing characteristic should be comparable to the majority of the scatterers in the win-
dow and therefore the reference pixel should have relatively a lot of SHP. Then the
Anderson-Darling test is applied between the reference pixel and the other pixels in
the window to identify SHP.

Figure 6.1 shows an example of distribution of the reference pixels (yellow stars)
and SHP (red dots) for two adjacent windows. The reference pixels are located in the
pasture which is a dominant surface type over the area. The water surface and man-
made structures such as buildings, bridges and roads seem to be correctly rejected.
This technique would also prevent underestimation of the deformation seen in the
results of PSI (Cuenca and Hanssen, 2007) mentioned in Section 4.3. Estimating the
coherence based on all SHP in the window will now give a coherence estimate that

is closer to the true value.
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Googleearth

(c) Reference pixels and SHP

Figure 6.1: Two estimation windows, labeled (C) and (D), further used in Figure 6.6.
(a) Optical image. (C) contains pasture, buildings and higher vegetation, whereas
(D) dominantly contains pasture. (b) Incoherently averaged amplitude of TSX-A
data set (Table 4.1). (c) Reference pixels and SHP. The reference pixels are indicated
with the yellow stars, and the SHP related to those reference pixels indicated with
the distribution of red dots. SHP appear to be selected correctly because buildings,
trees and water surfaces are rejected.
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6.3 Estimation method

6.3.1 Basic SBAS algorithm

Following the SBAS algorithm (Berardino et al., 2002; Casu et al., 2006; La-
nari et al., 2007), I assume n + 1 SAR acquisitions, indicated by vector ¥, and m

multimaster, small baseline, interferograms, 6¢, where

0¢ =[6¢1,...,00,]" = A¢, and 6.1)

¢ =[o(t1),....¢1)]" (6.2)
4

=7"[d(z1>, L d@)] 6.3)

where 6¢; is the observed unwrapped phase difference of the i interferometric com-
bination which is sufficiently coherent, for a specific pixel. The design matrix A
creates combinations of the single master temporal stack of interferograms ¢, and
@(tj) = Y(t;) — ¥(ty) and d(t;) are the unknown unwrapped phase and LOS displace-
ment of the j image with regards to ¥(t,) and d(ty) at a pixel respectively, at the

time of the master ¢,.

As mentioned in Section 2.2, the observed phase contains several phase compo-
nents,

5 = OB + 547 + 5P + S + SO, (6.4)

A temporally smooth deformation model is assumed, consisting of a linear (L) and a
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seasonal periodic (P) component:

¢LP(f )

4
f[vtj + 8 sin2nt; + C(cos 2ntj — 1)]

4
- f[wj + Asin2n(t; — AP + A sin 27At], 6.5)

where v is the linear deformation rate, and S and C are the coefficients describing the
seasonal periodic (annual) displacement (van Leijen and Hanssen, 2007). A and At
are the amplitude and the time offset of the seasonal periodic displacement relative

to the master acquisition, respectively, i.e.,

A=VS?+(C? and (6.6)

At = — sgn(C) arccos(S /A) /2. (6.7)

The LP deformation is defined to be zero at the master acquisition (f, = 0). The

phase difference due to the DEM error Az, can be written as

4dn By;
5 FOPO:— L1 ,
%, A rsind ¢

(6.8)

where B,; is the perpendicular baseline of the i interferogram, r is the range dis-
tance, and 6 is the incidence angle (Hanssen, 2001). The residual orbital phase
6¢™ can be estimated as a phase ramp using the unwrapped phase (Hanssen, 2001;

Gonzalez and Fernandez, 2011).

After subtracting the residual orbital phase ramp, and assuming that the unmod-
eled deformation, atmospheric noise and the other error sources are independent of

time and zero mean, the relation between the observed interferometric combinations
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09, the LP deformation model parameters x, and the DEM error Az can be written as

56 :47" |AMlc|| | +e. (6.9)

Az

where A is the m X n design matrix describing the relation between ¢ and 6¢, see

Equation (6.1),

t; sin2mt; cos2mty — 1
M=|: : : (6.10)

t, sin2nt, cos2nt,— 1

relates these observations to the vector of unknown parameters x = [v, S, C]”, and a
vector
BJ_l BJ_m T

c=[B B (6.11)
rsinf rsin @

scales the DEM error Az to the interferometric phase.

Equation (6.9) can be solved to minimize € by several approaches. The most
common way is an ordinary least squares method (LS). An iteratively reweighted LS
(IRLS) method, which minimize L,-norm, might be better because it is more robust
with respect to outliers possibly caused by unwrapping errors (Lauknes et al., 2011).
Moreover, if a variance-covariance (VC) matrix of the observations Qs is available,
the best linear unbiased estimator of unknowns % and Az, and their VC matrix Ox 4

are given by

[A’:‘J == (|ame] " o [AMlc])_l [AMic|" 05106, 6.12)
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and

-1

Os 4 = (fr)2 ([AMIC]T Oss [AM|c]) : (6.13)

respectively, based on a generalized least squares method (GLS) (Hanssen, 2001).
The advantage of this approach is that the errors of the observations and their corre-
lations are taken into account and a posterior VC matrix of the estimator of unknowns
is given. Here I use GLS because the variances of the observations are not equal and
there is a correlation between them. Derivation of a VC matrix of the observations is
described in Section 6.4.2 in detail.

Once the LP deformation model parameters % and the DEM error Az are esti-
mated, the residual phase—calculated by subtracting the phase due to the LP defor-
mation model and the DEM error from the wrapped phase—is unwrapped again to
reduce the unwrapping errors, followed by retrieving the phase of the LP deformation
model in a second iteration. This yields an improved unwrapped phase d¢" without
the DEM error.

As a next step, the unknown displacement, d, cf. Equation (6.3), at each acquisi-

tion can be estimated by solving
0¢' = —Ad+¢€. (6.14)

Here, LS, IRLS or GLS can be applied as well, similar to the previous step. The
estimator d is independent of the LP deformation model and includes the unmodeled
deformation and APS. Note that Equation (6.14) cannot be solved unless all inter-

ferograms are connected. This follows from the fact that disconnected subsets of
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interferograms would result in a rank deficiency of the design matrix A, and a sin-
gular value decomposition (SVD) can be used to compute the pseudo inverse of A.
Berardino et al. (2002) has shown that this would result in large discontinuities in
the cumulative deformations, leading to solutions which are not physically realistic.
This is solved by changing the formulation to estimate velocity between acquisi-
tions, instead of phase differences, i.e., by changing A and replacing d by a vector of

velocities per pixel, following Berardino et al. (2002).

Note that temporal overlap between the different subsets is required to obtain a
reliable solution. Finally, the APS can be estimated using a spatio-temporal filter

optionally (Ferretti et al., 2000; Hooper et al., 2007).

6.3.2 Combination of multiple data sets

Basically the greater the number of available data is, the more robust the es-
timation is. In this case the number of the available interferograms for each data
set is not sufficient to get a reliable result due to the fast decorrelation as it will be
shown in Figure 6.4. However the number of interferograms can be increased by
combining independent data sets—perhaps with different wavelengths and incidence
angles—given some assumptions. Assuming that the deformation has only a vertical

component, i.e.,

X =X, cos = [vy, Sy, Cy]" cosf, and (6.15)

d =d, cos 9, (6.16)
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where {-}, denotes the vertical component, Equations (6.9) and (6.14) for independent

data sets with different wavelengths and incidence angles can be expanded as

4r
o¢' F[AIM1 cos6'lc']

_ : e 6.17)
Y A7 KK K| .K Az
/l_K[A M*” cos 6% |c™]
and
4
50! /l—jerl cos '
s = : d, + €, (6.18)

o'~ j—ZAK cos 6%

respectively, where {-}X represents K™ data set.

Combining multiple data sets will improve the precision of the results due to
the improved temporal sampling. Moreover, if the different data sets have different
temporal coverage and if they are temporally overlapping, the time period of the

estimated time series of the deformation is extended.

6.4 Validation with real data

I applied these methods to an area south of Delft, the Netherlands (Figure 4.3).
The groundwater level in the area is monitored continuously and changes periodically—
low in summer and high in winter (van Leijen and Hanssen, 2007). Past studies have
suggested that the annual component of the surface displacement has a 1-2 month
delay with respect to the groundwater level change (van Leijen and Hanssen, 2007;

Cuenca and Hanssen, 2007).
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I did not use the two ERS-1 data sets (Table 4.1) for the joint estimation due to
their old acquisition date compared to the other data sets. The RS2-HV data set was
not used either because RS2-HH showed higher coherence than RS2-HV according
to Chapter 5. Consequently I use six data sets hereafter; ALOS-1, ALOS-ii, Envisat,

RS2-HH (simply referred as RS2 from here), TSX-A and TSX-D in Table 4.1.

Figure 6.2 is the flowchart of the processing approach. In the SBAS process-
ing, firstly all images in a single data set were coregistered to a single image and
geocoded. Spectral filtering was applied to the possible interferometric combina-
tions in order to mitigate spatial decorrelation (Gatelli et al., 1994). These processes
were implemented using Doris (Kampes et al., 2003). I allocated adjacent rectan-
gular windows based on geometrical coordinates to uniformize the location and the
width of the windows between all data sets as is the case in Chapter 5. The dimension
of the windows is about 230 m X 230 m. After the reference pixels were identified
from the incoherent average of amplitude, SHP were selected in each window by
applying the Anderson-Darling test, see Section 6.2. Distribution of the number of
SHP for each data set is shown in Figure 6.3. Whereas the pasture has large number
of SHP, in urbanized areas the number of SHP is small as expected (Ferretti et al.,

2011). Finally complex coherence was computed using SHP by Equation (5.2).

In the computation of the complex coherence, I subtracted the orbital residual
phase ramps estimated from the PSI results (Figure 4.7) as well as the topographic
phase. The phase ramps for all single master interferograms were computed by LS
from the unwrapped phase at PS using the PSI results. Then the phase ramps for
multimaster interferograms were estimated from their appropriate combinations. The

estimated orbital phase ramps are accurate enough because PS are distributed suffi-
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Figure 6.2: Flowchart of processing approach.

ciently dense and homogeneous and there seems to be no large deformation at all PS
in the area (Figure 4.7). The bias of the phase for each image as a whole was also es-
timated simultaneously. By removing the orbital phase ramp and the bias, the phase
for each image was adjusted with reference to the average of the PS. This means that
it is not necessary to choose a particular point as a reference point where the phase is

set to zero.

6.4.1 Selection of pixels and interferograms based on coherence

There are very few pixels with adequate coherence due to very fast temporal
decorrelation over the pasture. These decorrelated pixels were discarded to avoid un-
wrapping errors. Similarly, interferograms with many decorrelated pixels were dis-
carded since they increase computing time but hardly contribute to the final results.
Conventionally, a coherence threshold has been used to discard decorrelated pixels
(Berardino et al., 2002; Gonzalez and Fernandez, 2011; Lauknes et al., 2011). How-

ever, the calculated coherence is biased, and its bias and standard deviation depend
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Figure 6.3: Maps of the number of SHP. The areas delineated by white polygons
correspond to pasture. Note that the color scales are different for each data set.

on the number of independent samples L and the coherence magnitude (Figure 5.1).

Additionally L varies depending on resolution (satellite-dependent) and on the ap-
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plication of the adaptive coherence window (Figure 6.3). Therefore the coherence

threshold should not be a common constant value.

I computed the coherence threshold by the same approach as the total decorrela-
tion ¥4 in Section 5.4.3. The number of independent samples L was calculated from
the number of SHP and the oversampling rate of the SAR image (Table 4.1). Note
that this means each pixel in each data set will have a different coherence threshold.
The pixels with the lower coherence than the calculated coherence threshold were
discarded. The interferograms with more discarded pixels than 30% of all pixels

were excluded from further processing.

As a result of selection of the pixels and the interferograms, only a limited num-
ber of the interferograms has been kept (Figure 6.4, Tables A.4—A.6 and Figures B.1-
B.12). Since longer wavelengths are less affected by temporal decorrelation, ALOS
data sets keep the interferograms with relatively long time intervals (Zebker and Vil-
lasenor, 1992; Rosen et al., 1996; Wei and Sandwell, 2010). There are more applica-
ble interferograms in winter than in summer due to the slower temporal decorrelation
in winter. There are only four interferograms with longer time intervals than a year.
Whereas their wrapped phases in the pasture are almost decorrelated, they still seem
to show an increase in the LOS (Figure B.1). For the ALOS-ii data set, the perpen-
dicular baseline is correlated with time for consecutive images, which could result
in the leaking of linear deformation signals into the estimation of DEM errors. TSX

data sets show a lot of available interferograms due to their short revisit time interval.

Following the selection of pixels and interferograms, I unwrapped the phase by a
statistical-cost approach, the same method as StaMPS/MTI (Hooper, 2010), and es-

timated LP deformation parameters using VC matrices described in the next section.
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Figure 6.4: All available SAR images and baseline configuration. Perpendicular
baselines are normalized to the critical baseline (Hanssen, 2001). The gray solid
lines indicate selected interferograms based on coherence (Section 6.4.1). A box
with a dashed line indicates the time period shown in Figure 6.8.

6.4.2 Estimation of VC matrix of observation

The VC matrix of the observations Qs4 18 necessary for GLS. Mainly Qsg con-
tains the effects of APS and decorrelation (Samieie-Esfahany and Hanssen, 2011;

Akbari and Motagh, 2012), i.e.,

Qs = Qaps + Qcohs (6.19)

where Qaps and Q.o are the VC matrix of APS and the decorrelation effect, respec-
tively.

Diagonal elements of Qaps are the sum of the variance of APS for a master
and a slave image. The variance of APS for the j® image, O'ZAPSJJ_, was calculated
from the estimated APS for each image, which were obtained from the PS results

using temporal high-pass and spatial low-pass filtering (Hooper et al., 2007) (Fig-
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ures B.13-B.30). Off-diagonal elements of Qaps describe correlation between in-
terferograms. If an image is commonly used in two interferograms, these interfero-
grams are correlated. The covariance between them is the variance of the common
image (Emardson et al., 2003; Akbari and Motagh, 2012). The covariance is pos-
itive if the common image is used as a master or a slave for both interferograms,
whereas negative if used as a master for an interferogram and a slave for the other.

For example, suppose that only three interferograms from two images are available,

00 = [¢(1) — P(11), d(t3) — P(11), p(t3) — P(12)]", T get

P 2 2 )
Oapss; T O apsy, O APS O APS 1,
_ 2 P P 2
Qaps = O APS 1, Oapss; T O apsy, O APS 13 . (6.20)
o 2 2 2
O APS 1) O APS 13 Oaps., T O ApPs;

Q.on has only diagonal elements derived from coherence. The phase variance

o, can be estimated from the theoretical coherence y and the number of looks L

2
¢

(Hanssen, 2001),

oy = f [¢ — ¢ol*pdf($)de, with (6.21)
, _(A-lyPHf T@eL-1)
pdf(¢:y.L.do) =——_ {[r( DD (6.22)

(1 _ﬁZ)LH/Z 2 (1 —ﬂz)L
1 & TA-1/2) TL-1-11+Qr+1)p?
2T -1) LIT(L-1/2-r) T(L-1) A-py2 [

X [M (E + arcsin,B) + ;]

where 8 = |y|cos(¢ — @), see Figure 6.5. The theoretical coherence |y| was estimated

from |y| by numerically inverting Equation (5.4).
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Figure 6.5: Phase standard deviation o, as a function of the theoretical coherence |y|
and the number of looks L. As might be expected, high coherence leads to low stan-
dard deviation. Note that a large number of looks also reduce the standard deviation.

6.5 Results of joint estimation

Table 6.1 shows the average of the estimated parameters and their posterior stan-
dard deviations for each single and combined data set, indicated by the radar bands of
L, C, and X. Single data sets show relatively large standard deviations but reasonably
consistent subsidence rates and annual deformation. In particular ALOS-ii and RS2
have very large standard deviations because ALOS-ii has a correlation between time
and baseline as mentioned in Section 6.4.1 and RS2 has fewer and noisier interfero-
grams (Figure B.7). By combining these data sets, however, the standard deviations
become smaller, which means the results are more reliable. LCX combination is
regarded as the final result because its standard deviations are small and temporal
coverage is the longest, though the standard deviations of the other combinations are
comparable with the LCX combination. With a standard deviation of 5.7 mm/yr, the

estimated linear deformation rate 36.6 mm/yr is considered to be significant.
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Table 6.1: Average of estimated parameters

Used 5.0 s Ay i At Gy Az T4,
data set Band mm/yr mm day m
ALOS-i L |215 84 148 41 -41 20 -1.0 1.1
ALOS-ii L |242 343 130 57 -40 31 05 49
Envisat C 327 194 91 37 -30 20 -14 15
RS2 C |324 394 63 69 -50 111 -08 66
TSX-A X [544 102 131 29 -31 14 -07 18
TSX-D X 375 127 94 28 45 24 27 13
ALOS-iand-ii L |203 7.0 143 3.1 -40 16 -0.7 1.0
Envisatand RS2 C |332 165 83 3.1 -33 20 -14 15
TSX-Aand-D X |47.0 80 11.0 19 -36 11 2.1 1.0
plOS L2 e 227 56 100 23 49 20 03 06
Téififﬁgéﬁ.’n LX 367 61 108 18 -45 13 -07 0.7
TES“)V(i_S/i‘t;fds_zl’) CX 465 72 109 17 -35 10 20 09
ALOSH, i,
Envisat, RS2, LCX | 366 57 106 1.6 -44 12 -08 07
TSX-A and -D

4 Positive values mean subsidence  ° With reference to 1 January

The results for single-band estimations are quite different, both considering nu-
merical values as well as in terms of significance. Although this demonstrates the
need to improve quality by combining data sets, differences can also be due to differ-
ences in observation period, e.g., for L-band December 2006 - July 2010 and X-band
April 2009 - April 2012, in combination with possible non-linear behavior. Vari-
ations in the effective scattering center height for different wavelengths could also
influence the results, especially the seasonal periodic signal. Yet, the interannual
subsidence rate would be unaffected because it covers a whole year or longer. Based

on all results, it seems safe to conclude that this area is subsiding faster than 20
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mm/yr on average.

Figures 6.6 and 6.7 show the maps of the estimated parameters and their standard
deviations of the joint (combined) adjustment based on all data sets, respectively.
In the pasture area, outlined by the polygon, a significant subsidence rate is visible,
spatially variable and with an average subsidence value of $, = 36.6 mm/yr. For
comparison, the middle west part around (B), which is an area of greenhouses, shows
slow subsidence in Figure 6.6a, in agreement with the PSI results of Figure 4.7. The
average amplitude within the pasture is KV = 10.6 mm (Figure 6.6b), and the time
offset At = —44 days with reference to 1 January (Figure 6.6¢c), corresponding with
a maximum at 17 February and a minimum at 18 August, consistent with previous

studies (Cuenca and Hanssen, 2007; van Leijen and Hanssen, 2007).

Figure 6.8 shows the estimated time series of the displacement at the positions
(A)—(E) in Figure 6.6, between December 2006 and April 2012 (used interferograms
can be seen in Figure 6.4). Position (A) is in the urban area, and can be considered as
stable, whereas position (B) (greenhouse area) shows slow subsidence, as discussed
above. Position (C) and (D) are in the pasture area, exhibit a linear subsidence rate of
25 and 31 mm/yr, respectively. Position (E) shows one of the maximum subsidence
signals, with more than 400 mm over the time period, equivalent to 89 mm/yr. The
densely sampled time series in Figure 6.8 show that by combining multiple data sets
the estimation becomes more robust. It has to be noted that, however, the estimated
time series of the displacement might not be sufficiently reliable because the number
of the used interferograms is not large compared with the number of the estimated
parameters and there are few temporally overlapping interferograms, see Figure 6.4,

whereas there are plenty of redundant interferograms in the estimation of the LP
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12 20

(a) Linear subsidence rate ¥, (mm/yr) (b) Amplitude of the periodic annual signal A,
(mm)

(c) Time offset At of the sinusoidal signal (day) (d) DEM error Az (m)
with reference to 1 January

Figure 6.6: Maps of the estimated LP deformation parameters and DEM error for
combined data set using all data sets. Positive values of $, indicate subsidence. The
areas with large deformation, delineated by the polygons, correspond to the pasture.
Deformation time series at (A)—(E) are shown in Figure 6.8.

components. Therefore d, could be easily affected by phase noises such as decorre-
lation and APS unlike ¥, and Az, which might be the cause of the jump of the height

change seen in Figure 6.8.
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Figure 6.7: Maps of the standard deviations of the model parameters for combined
data set using all data sets. The areas delineated by the polygons correspond to the
pasture.

The seasonal periodic deformation (Figure 6.6b) has spatially variable amplitude
but is strongly correlated with the subsidence rates. This is expected, since vol-
ume change of peat occurs mainly due to two causes; consolidation and oxidation

(Nieuwenhuis and Schokking, 1997). Consolidation is partly reversible and affected

by groundwater levels—generally low in summer and high in winter. Oxidation
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Figure 6.8: Time series of displacement at (A)—(E) in Figure 6.6. Lines are the best
fit LP deformation and symbols are the estimated height change at each acquisition.
The height changes are adjusted to equalize the LP deformations at 20 December
2006. (C)—(E) in pasture have large annual and linear deformation, whereas (A) in
the urban area is almost stable. (B) shows slow subsidence, corresponding to the PSI
result (Figure 4.7).
happens when the peat is exposed to the air, and is irreversible, leading to interan-
nual subsidence. The amplitude of the volume change caused by either phenomenon
would be proportional to the volume of the exposed peat. Therefore the more peat
in the vadose zone, the faster the subsidence rate and the larger the amplitude of the
seasonal deformation. In other words, the area with large linear and periodic de-
formation may have thicker peat. Another possible interpretation of the correlation
between 9, and A, is that the motion might be stepwise; subsidence only in summer
(Figure 6.8). A large subsidence rate only in summer would yield a pseudo large
amplitude in the seasonal periodic function.

Such a large deformation can generally yield phase unwrapping errors, especially

for X-band and C-band. In this case, however, this is not likely because the used

interferograms have very short time intervals (Figures 6.4, 6.9 and Tables A.4— A.6).
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Although in winter the time intervals are relatively long, the deformation is very
small due to high ground water level, as also seen in Figure 6.8. In summer the
longest time interval of the used interferograms is 33 days for X-band. Even if there
is a 50 mm/yr displacement rate difference between adjacent pixels, which seems to
be possible at the border between pasture and another no deformation area, there is

only 4.5 mm gap for 33 days, much less than 7.75 mm equivalent to & rad for X-band.

To assess the influence of the filtering of nonrepresentative pixels with the adap-
tive coherence estimation window, I also performed the joint estimation without ap-
plying the adaptive filtering. From the results (Figure 6.10), it appears that windows
with mixed contents (e.g. buildings and pasture) may result in a significantly un-
derestimated subsidence rate. This is an expected effect, since the buildings usually
have a dominant amplitude and do not exhibit the deformation rates of the pasture.
From this comparison, I conclude that the adaptive coherence window filtering plays

an important role in the applied methodology.

6.6 Conclusions

For areas with fast temporal decorrelation, such as pasture, conventional time se-
ries InNSAR methods such as PSI and SBAS are not able to detect small deformation
signals. Here I have demonstrated that it is still possible to estimate such defor-
mation by (1) spatial averaging of SHP using nonoverlapping estimation windows,
(2) a parametric deformation model and an GLS method, and (3) a combination of
all available satellite SAR data derived from different sensors. Application of the

method on the real data has shown that the pasture near Delft is subsiding on aver-
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Figure 6.9: Time series of the estimated deformation at (C), (D) and (E) with un-
wrapped phase difference of the used interferograms. There seems no phase differ-
ence larger than 2 & for each wavelength, implying improbable unwrapping errors.

age 36.6 mm/yr, albeit with significant local variability, that seasonal variation has
an amplitude of 10.6 mm, and that the maximum of the seasonal height occurs very

homogeneously in time. Application of this technique over larger areas in the Nether-
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(c) At (day) (d) Az (m)

Figure 6.10: Maps of the estimated LP deformation parameters and a DEM error for
combined data set using all data sets without applying the adaptive windows.

lands will have important consequences for water management.



Chapter 7

Conclusion

Whereas InSAR is a powerful tool to detect ground surface displacement, it suf-
fers from temporal decorrelation and conventional approaches have not succeeded
in detecting subsidence precisely over pasture. It is important to measure height
changes of peat meadows for water management. I studied temporal decorrelation
behavior and displacement in a pasture area on drained peat soils in the Netherlands.
I also investigated measuring capability of PSI using L- and C-band which is im-
portant for using PSI as a deformation monitoring method. I summarize the main

conclusions of this thesis as follows:

Chapter 3: Comparison of PSI measuring capability of L- and C-band

(1) Density of identified PS points depends on the inherent spatial resolution of the

used data in urban areas.

(2) L-band has a better capability to detect PS points in vegetated areas than C-band.

85
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(3) Measuring precision of an individual PS point is about 8-11 mm and 2-3 mm for
L- and C-band, respectively, almost proportional to the wavelength, suggesting
that the shorter wavelength is more suitable for pointwise usage such as infras-

tructure monitoring.

(4) Measuring accuracy of spatially averaged PS points is about 4-6 mm and 2 mm/yr,
and does not have a significant dependency on the wavelength, which means L-
band has a comparable capability of detecting spatially distributed deformation

to C-band.

Chapter 5: Quantitative assessment of temporal decorrelation in L-, C-, and

X-band

(1) Temporal decorrelation behavior in a specific peat meadow area has been quan-

titatively assessed for three kinds of wavelengths; L-, C- and X-band.

(2) It has been quantitatively proven that a longer wavelength has longer decorrela-

tion time.

(3) Decorrelation speed has seasonal dependence; slower in winter than in summer.

(4) Not only a wavelength and revisit time of a satellite but also spatial resolution is

a critical factor to obtain a coherent signal.

(5) New SAR satellites with short revisit time or high spatial resolution will enhance

the chance to detect displacement.

Chapter 6: Displacement extraction by integrative InNSAR analysis
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(1) A new multisatellite InSAR approach has been proposed to overcome severe

temporal decorrelation.

(2) Ithas been shown by validation with real data that integrative use of multisatellite

data makes parameter estimation more robust.

(3) Subsidence of 36.6 mm/yr and annual vertical fluctuations with an amplitude of
10.6 mm, a maximum at 17 February and a minimum at 18 August on average

have been significantly detected in the target area.

(4) An adaptive coherence estimation method helps to avoid underestimation of dis-

placement possibly due to stable buildings with deep foundations.
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Table A.1: List of acquisition date (yyyymmdd) of SAR images (ALOS and ERS-1)

ALOS-1 ALOS-11 ERS-1 ERS-ii

1 20070305 | 1 20061220 | 1 19920129 | 1 19931225

2 20070721 | 2 20070204 | 2 19920201 | 2 19931228

3 20070905 | 3 20070622 | 3 19920204 | 3 19931231

4 20071021 | 4 20070807 | 4 19920207 | 4 19940103

5 20071206 | 5 20070922 | 5 19920210 | 5 19940106

6 20080121 | 6 20071107 | 6 19920213 | 6 19940109

7 20080307 | 7 20071223 | 7 19920216 | 7 19940112

8 20080422 | 8 20080207 | 8 19920219 | 8 19940115

9 20080607 | 9 20080809 | 9 19920222 | 9 19940118

10 20080723 | 10 20080924 | 10 19920225 | 10 19940121
11 20080907 | 11 20081109 | 11 19920228 | 11 19940124
12 20081023 | 12 20090209 | 12 19920302 | 12 19940127
13 20090310 | 13 20090627 | 13 19920305 | 13 19940130
14 20090726 | 14 20090812 | 14 19920308 | 14 19940202
15 20090910 | 15 20090927 | 15 19920311 | 15 19940205
16 20091026 | 16 20091228 | 16 19920314 | 16 19940208
17 20100126 | 17 20100212 | 17 19920317 | 17 19940211
18 20100313 | 18 20100330 | 18 19920320 | 18 19940214
19 20100428 | 19 20100515 | 19 19920326 | 19 19940217
20 20100729 | 20 20100630 | 20 19920329 | 20 19940220
21 20110316 | 21 20110215 21 19940223
22 19940226

23 19940301

24 19940304

25 19940307

26 19940310

27 19940313

28 19940316

29 19940319

30 19940322

31 19940325

32 19940328

33 19940406

34 19940409
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Table A.2: List of acquisition date (yyyymmdd) of SAR images (En-

visat and RS2)
Envisat RS2
1 20030212 31 20060517 61 20090506 | 1* 20100613
2 20030702 32 20060621 62 20090610 | 2* 20100707
3 20030806 33 20060726 63 20090715 | 3 20100731
4 20030910 34 20060830 64 20090819 | 4 20100824
5 20031015 35 20061004 65 20090923 | 5 20101011
6 20031119 36 20061108 66 20091028 | 6 20101104
7 20031224 37 20070117 67 20091202 | 7 20101128
8 20040128 38 20070221 68 20100106 | 8 20101222
9 20040303 39 20070328 69 20100210 | 9 20110115
10 20040407 40 20070502 70 20100317 | 10 20110208
11 20040512 41 20070606 71 20100421 | 11 20110304
12 20040616 42 20070711 72 20100526 | 12 20110328
13 20040721 43 20070815 73 20100804 | 13 20110421
14 20040825 44 20070919 74 20100908 | 14 20110515
15 20040929 45 20071024 75 20101013 | 15 20110608
16 20041103 46 20071128 16 20110702
17 20041208 47 20080102 17 20110726
18 20050112 48 20080206 18 20110819
19 20050216 49 20080312 19 20110912
20 20050323 50 20080416 20 20111006
21 20050427 51 20080521 21 20111030
22 20050601 52 20080625 22 20111123
23 20050706 53 20080730 23 20111217
24 20050810 54 20080903 24 20120110
25 20051019 55 20081008 25 20120203
26 20051123 56 20081112 26 20120227
27 20051228 57 20081217 27 20120322
28 20060201 58 20090121 28 20120415
29 20060308 59 20090225 29 20120509
30 20060412 60 20090401 30 20120602

4Only HH data; no HV data



Appendix A: Used SAR data and interferograms in Chapter 5 and 6

91

Table A.3: List of acquisition date (yyyymmdd) of SAR images (TSX)

TSX-A

TSX-D

0NN N AW

AR BB W W LW W LW LW LW LW WWIERNNNDNDNDNENDNNDDN =
W= OOV WD, OOV WD OWOVWOIONWN A WD = OO

20090406
20090417
20090428
20090509
20090520
20090531
20090611
20090622
20090703
20090714
20090725
20090805
20090816
20090827
20090907
20090918
20090929
20091010
20091021
20091101
20091112
20091123
20091204
20091215
20091226
20100106
20100117
20100219
20100302
20100324
20100404
20100518
20100529
20100609
20100620
20100701
20100712
20100723
20100803
20100814
20100825
20100905
20100927

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

20101019
20101030
20101110
20101121
20101202
20101213
20100224
20110115
20110126
20110217
20110311
20110402
20110413
20110424
20110505
20110516
20110527
20110607
20110618
20110629
20110710
20100721
20110801
20110812
20110823
20110903
20110914
20110925
20111017
20111028
20111108
20120215
20120226
20120308
20120319
20120410

0NN N AW

A A DR D W W LW W W W W LW WUWDERDNDNNDDNDNDDNDNDNND = e e = e e e
W NN = OO0 WUNPH WL OOUWOIANWUNPA WVWNORL, OOV WM PR W —=O\O

20090408
20090419
20090430
20090511
20090522
20090602
20090624
20090705
20090716
20090727
20090807
20090829
20090909
20090920
20091001
20091012
20091023
20091103
20091114
20091125
20091206
20091217
20091228
20100108
20100119
20100130
20100210
20100221
20100304
20100406
20100520
20100611
20100622
20100703
20100714
20100725
20100805
20100816
20100827
20100907
20100918
20100929
20101010

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

20101021
20101101
20101112
20101123
20101204
20101215
20101226
20110106
20110117
20110128
20110208
20110219
20110302
20110313
20110324
20110404
20110415
20110426
20110507
20110518
20110529
20110609
20110620
20110701
20110712
20110723
20110803
20110814
20110825
20110905
20110916
20110927
20111019
20111030
20120126
20120206
20120217
20120228
20120310
20120321
20120401
20120412
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Table A.4: Selected interferograms based on coherence

(ALOS)
ALOS-i ALOS-ii

# M? S® 4t B, | # M S dt B,
T 1 2 138 807 1 1 2 46 734
2 2 3 46 249| 2 3 4 46 175
3 02 4 92 649 3 3 5 92 270
4 2 5 138 888 | 4 3 6 138 1110
5 2 6 184 1443 | 5 4 5 46 95
6 2 10 368 -1205| 6 4 6 92 935
7 3 4 46 401 | 7 4 8 184 1727
8 3 5 92 639 8 5 6 46 840
9 3 6 138 1194 9 5 7 92 712
100 3 7 184 1986 |10 5 8 138 1632
11 3 10 322 -1454 |11 6 7 46 -127
12 4 5 46 23812 6 8 92 792
13 4 6 92 79313 7 8 46 920
14 4 7 138 1585 |14 9 10 46 787
15 4 8 184 215415 9 11 92 1067
16 4 10 276 -1855|16 10 11 46 280
17 5 6 46 555|17 10 12 138 1334
18 5 7 92 134718 11 12 92 1054
19 6 7 46 79219 13 14 46 -6
20 6 8 92 136120 13 15 92 534
210 7 8 46 569 |21 13 16 184 1263
2 7 9 92 608|22 14 15 46 540
23 8 9 46 39 (23 14 16 138 1269

24 10 11 46 -2971 |24 14 17 184 1971
25 10 12 92 -2419 |25 15 16 92 729
26 10 13 230 -912 |26 15 17 138 1431
27 10 14 368 -504 |27 15 18 184 1785
28 10 15 414 8228 15 19 230 2009
29 10 16 460 439 129 16 17 46 702
30 11 12 46 552 {30 16 18 92 1056
31 12 13 138 1507 | 31 16 19 138 1279
32 14 15 46 585132 17 18 46 354
33 14 16 92 943 133 17 19 92 577
34 15 16 46 357 134 18 19 46 223
35 15 18 184 2018 |35 19 20 46 181
36 15 19 230 2173
37 16 17 92 988
38 16 18 138 1661
39 16 19 184 1816
40 17 18 46 672
41 17 19 92 828
42 18 19 46 155
43 19 20 92 410

2 The number of master image in Table A.1
® The number of slave image in Table A.1
¢ Time interval
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Table A.5: Selected interferograms based on coher-

ence (Envisat and RS2)

Envisat RS2

# M?® S® 4t B, | # M S dt B,
1 7 8 35 410 1 2 3 24 192
2 8 10 70 174| 2 3 4 24 -59
3 16 17 35 46| 3 5 6 24 -318
4 18 19 35 190 4 5 7 48 -218
5 18 20 70 210 5 6 7 24 100
6 19 20 35 -401| 6 6 9 72 218
7 25 26 35 27| 7 6 10 96 77
8 26 27 35 21| 8 7 9 48 117
9 26 29 105 -134| 9 7 10 72 24
10 27 29 70 -155|10 7 11 96 150
11 28 30 70 91|11 7 12 120 61
12 37 39 70 96|12 9 10 24 -141
13 40 41 35 15313 9 11 48 33
14 42 43 35 99|14 9 12 72 -56
15 45 47 70 -205|15 10 11 24 174
16 46 48 70 -54|16 10 12 48 85
17 46 50 140 42|17 11 12 24 -89
18 48 49 35 304 |18 12 13 24 73
19 48 50 70 97|19 14 15 24 189
20 49 50 35 401[20 15 16 24 -2
21 51 52 35 199|221 17 18 24 -123
22 52 53 35 89|22 20 21 24 6l
23 55 56 35 18223 20 22 48 110
24 55 57 70 -146 |24 21 22 24 49
25 56 57 35 -328 |25 21 23 48 100
26 56 58 70 79|26 22 23 24 51
27 56 59 105 027 23 25 48 36
28 57 58 35 40728 23 26 72 -30
29 57 59 70 328(29 23 27 96 44
30 58 59 35 79|30 25 26 24 -65
31 62 63 35 76|31 25 27 48 8
32 63 64 35 -120[32 26 27 24 73
33 66 67 35 206|33 26 28 48 -100
34 66 68 70 934 27 28 24 -173
35 67 68 35 -215

36 67 70 105 -55

37 68 70 70 160

38 69 70 35 -372

39 69 71 70 -25

2 The number of master image in Table A.2
® The number of slave image in Table A.2

¢ Time interval
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Table A.6: Selected interferograms based on coherence (TSX-A)

TSX-A

# M?* S® 4t B, | # M S dr B, # M S dt B,
1 1 2 11 642 24 27 33 58| 83 48 49 11 -45
2 2 3 11 90|43 24 28 66 -215| 84 48 52 55 -66
3 2 4 22 43|44 24 29 77 -189| 85 49 52 44 22
4 3 4 11 4745 24 30 99 -186| 8 51 52 11 401
5 4 5 11 27|46 25 26 11 115| 87 51 53 33 476
6 4 6 22 37|47 25 27 22 230| 8 51 54 55 37
7 5 6 11 948 25 28 55 43| 89 52 53 22 75
8 8 9 11 -136[49 25 29 66 -17| 90 52 54 44 -363
9 9 10 11 -114|50 26 27 11 114| 91 53 54 22 -438
10 9 11 22 75|51 26 28 44 -158| 92 53 55 44 -106
11 10 11 11 39|52 26 29 55 -132| 93 54 55 22 332
12 11 12 11 91|53 27 28 33 -273| 94 55 56 11 15
13 11 13 22 14|54 27 29 44 -246| 95 56 57 11 -362
14 12 13 11 -76 |55 28 29 11 26| 96 56 58 22 -39
15 12 14 22 -197 |56 28 30 33 29| 97 57 58 11 323
16 13 14 11 -121 |57 28 31 44 43| 98 58 59 11 -253
17 13 15 22 -89 |58 29 30 22 3] 99 58 60 22 9
18 13 16 33 57059 29 31 33 17]100 58 61 33 4
19 14 15 11 31|60 30 31 11 14101 59 60 11 262
20 14 16 22 17761 33 34 11 -57[102 60 61 11 -5
21 15 16 11 146 |62 34 35 11 9103 61 62 11 -223
22 15 17 22 6163 35 36 11 29104 62 63 11 172
23 16 17 11 -140 |64 36 37 11 11105 63 64 11 -324
24 16 19 33 69|65 36 38 22 81106 66 67 11 -302
25 17 18 11 -110 |66 37 38 11 6107 67 68 11 110
26 17 19 22 71|67 38 39 11 -177 108 69 70 11 -210
27 18 19 11 181 |68 38 40 22 -84 /109 70 71 11  -99
286 19 20 11 3369 39 40 11 92 |110 71 72 22 -59
29 19 21 22 57|70 41 42 11 77 |111 72 73 11 -26
30 20 21 11 90|71 44 45 11 -431 | 112 72 74 22 244
31 21 22 11 99|72 44 46 22 58| 113 73 74 11 271
32 21 23 22 873 45 46 11 489|114 75 76 11 -278
33 21 24 33 82|74 45 47 22 146 | 115 75 71 22 -6
34 22 23 11 91|75 46 47 11 -343 116 76 77 11 273
35 22 24 22 181 |76 46 48 22 21117 76 78 22 150
36 22 25 33 9|77 46 49 33 46| 118 76 79 44 65
37 23 24 11 90|78 46 52 77 -68|119 77 78 11 -123
38 23 25 22 82|79 47 48 11 342|120 77 79 33 -207
39 23 27 44 148 |80 47 49 22 297 | 121 78 79 22 -84
40 24 25 11 -172 |81 47 51 55 -126

41 24 26 22 57|82 47 52 66 275

2 The number of master image in Table A.3
® The number of slave image in Table A.3
¢ Time interval
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Table A.7: Selected interferograms based on coherence (TSX-D)

TSX-D
# M?* SP 4ir¢ B, # M S dt B, # M S dt B,
I I 2 11 -102] 533 34 35 11 86 | 105 54 57 33 -4
2 1 3 22 53| 54 34 36 22 -65|106 54 58 44 10
32 3 11 49| 55 35 36 11 -151 107 55 56 11 -130
4 2 4 22 59| 56 36 37 11 231|108 55 57 22 -253
5 3 4 11 10| 57 37 38 11 -124|109 55 58 33 -189
6 3 5 22 65| 58 40 41 11 71110 55 59 44  -10
7 4 5 11 54| 59 41 42 11 -264 | 111 56 57 11 -123
8 4 6 22 24| 60 41 43 22 0112 56 58 22 -59
9 5 6 11 31| 61 42 43 11 264|113 56 59 33 120
100 6 7 22 91| 62 43 44 11 -101 | 114 57 58 11 64
17 8 11 34| 63 44 45 11 -59 | 115 57 59 22 243
12 7 9 22 31| 64 44 46 22 79 | 116 58 59 11 179
13 8 9 11 -65| 65 44 47 33 117 | 117 58 60 22 130
14 9 10 11 94| 66 45 46 11 138|118 59 60 11  -49
15 12 13 11 157 | 67 45 47 22 176 | 119 60 61 11 -151
16 12 15 33 -60| 68 46 47 11 38120 60 62 22 2
17 13 14 11 -70| 69 46 48 22 74 | 121 61 62 11 153
18 14 15 11 -147| 70 46 51 55 -15|122 61 63 22 82
19 15 16 11 109| 71 46 52 66 21 | 123 62 63 11 -71
20 16 17 11 3 72 46 54 88 82| 124 62 64 22 54
21 16 18 22 225 | 73 47 48 11 36 | 125 63 64 11 125
22 17 18 11 227 | 74 47 49 22 -107 | 126 63 65 22 -16
23 17 19 22 121 | 75 47 51 44 53| 127 64 65 11 -141
24 18 19 11 -106 | 76 47 52 55 -17 | 128 65 66 11 63
25 18 20 22 -101 | 77 47 54 77 -120| 129 66 67 11 75
26 18 21 33 4| 78 47 55 88 79 | 130 68 69 11  -16
27 19 20 11 5| 79 47 56 99 51131 69 70 11 77
28 19 21 22 101 | 80 48 49 11 -142 | 132 72 73 11 -133
20 20 21 11 97 | 81 48 52 44 52133 73 74 11 27
30 20 22 22 137 | 82 48 53 55 208|134 74 75 11  -60
31 20 23 33 127 | 83 49 51 22 54 | 135 75 76 22 20
32 20 25 55 32| 84 49 52 33 90 | 136 76 77 11 433
33 21 22 11 40| 8 49 53 44 66| 137 78 80 22 36
34 21 23 22 30| 8 51 52 11 36 | 138 78 81 33 -100
35 21 25 44 -129| 87 51 53 22 -120| 139 78 82 44 82
36 22 23 11 -10| 88 51 54 33 -67|140 78 83 55 143
37 22 25 33 -169| 8 51 55 44 131|141 79 80 11 -108
38 23 25 22 -159| 90 51 356 535 21142 79 8 33 -63
39 24 25 11 17| 91 51 57 66 -122 | 143 79 83 44 -1
40 24 27 33 237 92 52 53 11 -156 | 144 80 81 11 -137
41 24 28 44 -193 | 93 52 54 22 -104 | 145 80 82 22 45
42 24 29 55 -182 | 94 52 55 33 95 | 146 80 83 33 107
43 25 26 11 17| 95 52 56 44 35| 147 81 82 11 182
44 25 27 22 253 | 96 52 57 55 -158 | 148 81 83 22 243
45 25 28 33 209 | 97 52 58 66 94 | 149 81 84 33 172
46 25 29 44 -199 | 98 53 54 11 52| 150 82 83 11 61
47 27 28 11 44 | 99 53 55 22 251|151 82 84 22 -10
48 27 29 22 54| 100 53 56 33 121 | 152 82 85 33 82
49 28 29 11 10 | 101 53 57 44 2153 83 84 11 -71
50 28 30 44 95| 102 53 58 55 62| 154 83 85 22 21
51 29 30 33 851103 54 55 11 199|155 84 85 11 92
52 33 34 11 -125|104 54 56 22 69

2 The number of master image in Table A.3
® The number of slave image in Table A.3

¢ Time interval
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Figure B.1: Wrapped phase (rad) of ALOS-i. Information of the interferograms are
in Table A.1 and A.4. Interferograms framed by black line have longer time interval
than a year.



98 Appendix B: Supplementary figures

-1.7 1.8

Figure B.2: Unwrapped phase (rad) of ALOS-i. Information of the interferograms
are in Table A.1 and A.4. White area is masked because of low coherence. Interfer-
ograms framed by black line have longer time interval than a year.
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Figure B.3: Wrapped phase (rad) of ALOS-ii. Information of the interferograms are
in Table A.1 and A 4.
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Figure B.4: Unwrapped phase (rad) of ALOS-ii. Information of the interferograms
are in Table A.1 and A 4.
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Figure B.5: Wrapped phase (rad) of Envisat. Information of the interferograms are
in Table A.2 and A.5.
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Figure B.6: Unwrapped phase (rad) of Envisat. Information of the interferograms
are in Table A.2 and A.S.
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Figure B.7: Wrapped phase (rad) of RS2. Information of the interferograms are in
Table A.2 and A.5.



104 Appendix B: Supplementary figures

Figure B.8: Unwrapped phase (rad) of RS2. Information of the interferograms are in
Table A.2 and A.S.
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Figure B.9: Wrapped phase (rad) of TSX-A. Information of the interferograms are
in Table A.3 and A.6.



106 Appendix B: Supplementary figures

Figure B.10: Unwrapped phase (rad) of TSX-A. Information of the interferograms
are in Table A.3 and A.6.
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Figure B.11: Wrapped phase (rad) of TSX-D. Information of the interferograms are
in Table A.3 and A.7.
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Figure B.12: Unwrapped phase (rad) of TSX-D. Information of the interferograms
are in Table A.3 and A.7.
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Figure B.13: Estimated APS (mm) of ALOS-i by PSI.
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Figure B.14: Variance of APS for each Figure B.15: Variance-covariance ma-
image of ALOS-i. trix of APS of ALOS-1
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Figure B.16: Estimated APS (mm) of ALOS-ii by PSL

20 20
o . Ff:
15 R £ 10 FLPM 10
E 10| %000 .. ° > | E e
0O . X =
g 10 "9%0 0 o o & 20 == ° £
© 00 _Fg4 o) ——
5 ) O € F— s -10
30 | lI ': Hﬁ
0 — -20
5 10 15 20 10 20 30
SAR images Interferograms
Figure B.17: Variance of APS for each Figure B.18: Variance-covariance ma-

image of ALOS-ii. trix of APS of ALOS-ii.
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Figure B.19: Estimated APS (mm) of Envisat by PSI.
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Figure B.20: Variance of APS for each Figure B.21: Variance-covariance ma-

image of Envisat. trix of APS of Envisat.
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Figure B.22: Estimated APS (mm) of RS2 by PSI.
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Figure B.23: Variance of APS for each Figure B.24: Variance-covariance ma-

image of RS2. trix of APS of RS2.
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Figure B.25: Estimated APS (mm) of TSX-A by PSI.
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Figure B.26: Variance of APS for each Figure B.27: Variance-covariance ma-

image of TSX-A. trix of APS of TSX-A.
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Figure B.28: Estimated APS (mm) of TSX-D by PSI.
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Figure B.29: Variance of APS for each Figure B.30: Variance-covariance ma-

image of TSX-D. trix of APS of TSX-D.
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Figure B.31: Maps of the estimated linear subsidence rate ¥, (mm/yr) for each and
combined data set. Positive values mean subsidence. The area delineated by the
polygon corresponds to the pasture.
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Figure B.32: Maps of the standard deviations of linear subsidence rate o, (mm/yr)
for each and combined data set. The area delineated by the polygon corresponds to
the pasture.
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Figure B.33: Maps of the estimated amplitude of the seasonal periodic deformation
A, (mm) for each and combined data set. The area delineated by the polygon corre-
sponds to the pasture.
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Figure B.34: Maps of the standard deviations of the amplitude of the seasonal peri-
odic deformation o4 (mm) for each and combined data set. The area delineated by
the polygon corresponds to the pasture.
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Figure B.35: Maps of the estimated time offset of the seasonal periodic deforma-
tion At (day) with reference to 1 January for each and combined data set. The area
delineated by the polygon corresponds to the pasture.
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Figure B.36: Maps of the standard deviations of the amplitude of the seasonal peri-
odic deformation o, (day) for each and combined data set. The area delineated by
the polygon corresponds to the pasture.
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Figure B.37: Maps of the estimated DEM error Az (m) for each and combined data
set. The area delineated by the polygon corresponds to the pasture.
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Figure B.38: Maps of the standard deviations of the DEM error o, (m) for each and
combined data set. The area delineated by the polygon corresponds to the pasture.
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