2015年7月タリム盆地南部ホータンで発生した

地震(M6.4)に伴う地殻変動の検出

北海道大学地球惑星科学科4年 宇宙測地学研究室 02122058

> 草地 勝 Kusachi Masaru

指導教官 古屋 正人 教授

概要

中国の新疆(しんきょう)ウイグル自治区は中国の西端に位置しており、 かつてはシルクロードの重要な拠点の一つであった。この地域はアルタイ山 脈、天山山脈、崑崙(こんろん)山脈といった3つの山脈がタリム盆地、ジ ュンガル盆地の2つの盆地を挟んでいるという特殊な地形をしており、地震 が多発している地域である。今回地震の観測を行ったホータンはタリム盆地 の南に位置しており、この地域で2015年7月にMw6.4の地震が発生した。

本研究では、宇宙航空研究機構(JAXA)が2011年まで用いていた ALOS(Advanced Land Observing Satellite、日本名「だいち」)の後継機と して打ち上げられた ALOS2(日本名「だいち2号」)に搭載されている合成 開ロレーダー(PALSAR-2)が2014年10月から2015年7月までに取得した データをもとに、本地震に伴って発生した地殻変動を検出した。

2014年10月5日と2015年7月26日に得られたデータを用いて差分干渉 処理を行った結果、南西側で視線方向に近づき、北東側で遠ざかる逆断層に よるものと考えられる地殻変動を検出することができた。また、本地震を含 めたホータン周辺で発生した地震の震源球と検出結果を照らしあわせた。さ らに、断層モデルを作成し断層のすべり分布を推定した。

目次

- 1 はじめに
 - 1.1 測地技術の歴史
 - 1.2 SAR
 - 1.3 SLC 画像
 - 1.4 InSAR
 - 1.5 ALOS2/PALSAR2
 - 1.6 研究の目的
- 2 観測地域及び用いたデータ
 - 2.1 観測地域
 - 2.2 用いたデータ
- 3 結果
- 4 謝辞
- 5 参考文献

1 はじめに

1.1 測地技術の歴史

測地学の始まりは古く、紀元前3世紀にエジプトでエラトステネスが地球 の大きさを求めたことが起源とされている。彼は角度と距離という物理量を 用いて、誤差15%という当時としては驚くほど正確な地球の円周を求めるこ とに成功した。

それからしばらくは天文測量や三角測量といった基本的な値を用いた方法 で測量を行っていたが、次第にセンチメールオーダー、更にはミリメートル オーダーの精度が要求されるようになってくるとこれらの手法で測量を行う ことが困難になってきた。

転機は1957年、旧ソ連が世界で初めてとなる人工衛星「スプートニク1 号」の打ち上げに成功した。それ以来各国は宇宙開発を進め、地球を宇宙か ら捉えようとする動きが活発になっていった。1970年代頃から測地技術は急 速に発展し、VLBI (Very Long Baseline Interferometry:「超長基線電波 干渉計」)、SLR (Satellite Laser Ranging:「人工衛星レーザー測距」)、 GPS (Global Positioning System:「全地球測位システム」)といった宇宙 測地技術が発達し、より高い精度で測量を行うことが可能になった。特に GPS などは我々にも馴染み深く、空間・時間分解能が高いため地殻変動を検 出する際にもよく用いられている。しかし GPS で観測を行う際にはあらかじ め地上に観測点を設置しておかなければならない。したがって事前に発生場 所を知ることのできない地震による地殻変動を観測することは困難である。

こうした背景もあり近年注目を集めているのが、地表に観測点を必要とし ない SAR (Synthetic Aperture Radar:「合成開口レーダー」)を用いた観測 法である。一定の周期で回帰する人工衛星から地表に向けてマイクロ波を照 射し、地上からの反射波を受信する。この技術を用いることで地表に観測点 を設置することなく、昼夜や天候に左右されずに高分解能のデータを得るこ とができるようになった。

1.2 SAR

レーダーで地表の観測を行う場合、高い分解能を得るためにはレーダーの アンテナの指向性を高める必要があり、より巨大なアンテナが必要となる。 例えば地表で10メートル以上の分解能を得ようとした場合、アンテナの大 きさが1キロメートルを超えてしまう。これは、人工衛星に搭載することを 考えた時に非現実的な大きさである。

SAR(Synthetic Aperture Radar:「合成開口レーダー」)では、人工衛星 や飛行機などの飛翔体に搭載したアンテナから、地表に対してマイクロ波の 送受信を行う。この送受信を連続的に行い、仮想的に巨大なアンテナを作り 出すことで飛ぶ方向の分解能を高めることができる。

SARは能動型のセンサーであり観測を太陽光に依存していないため、昼夜 を問わずに観測することが可能である。同様の理由から、太陽光が1年の半 分しか届かない北極や南極などの日照時間の短い高緯度地域の観測にも適し ている。

観測に用いるマイクロ波の波長はおよそ1センチメートルから1メートル である。よって可視光での観測と違い、雲や霧などの波長より十分小さな粒 子を貫通することができ、降雨の多い熱帯地域や降雨災害時の観測にも有効 である。またマイクロ波の波長はある程度コントロールできるため、より長 い波長を用いることで、植物や積雪で覆われている地表を観測することも可 能となる。

以上の特徴から地殻変動の観測のみならず、海洋学・植生・雪氷学・都市 環境など多くの分野で利用されている。

1.3 高分解能化およびSLC画像

SARの技術は Azimuth 方向の分解能を向上させるが、Range 方向の分解能 を高めるためにパルス圧縮という技術が用いられる。SAR では地表で反射す る位置の違いによって生じる衛星への到着時間のずれを利用して、Range 方 向の対象物の判別を行っている。図 1.2 の左側のようにパルスの継続時間が 長くなると、右側の短い時よりも分解能が低くなってしまう。しかしあまり にも短いパルスを用いてしまうとノイズが大きくなってしまい、正確な信号 を受信することができなくなってしまう。また、短い継続時間でより強力な 電波を送信することも衛星を用いた観測では困難である。よってこの問題を 解決するために、長いパルスに変調を加え帯域を広げることで、擬似的にパ ルス継続時間を短くしているかのように扱う操作を行う。この技術をパルス 圧縮といい、SAR のみならずレーダーを用いた観測において広く使われてい る。

図 1.2 パルス幅と分解能

SARから直接得られた生データ(Raw data)を画像化しても、それだけで は何を示しているのかわからない。そこで生データに前述の高分解能化の処 理を行うことによって、図1.3 や図1.4 のような複素画像のSLC(Single Look Complex)画像を得ることができる。これは実部と虚部で反射強度と位 相のデータを含んでおり、このデータの二乗和の平方根をとったものを平均 化し、画像にしたものを強度画像と呼ぶ。

図 1.3 タリム盆地南部ホータンの SAR 画像(2014/10/05)

図 1.4 タリム盆地南部ホータンの SAR 画像(2015/7/26)

Range 方向の分解能 ∠ r は式(1.1)で表される。

この式(1.1)からもパルスの継続時間 τ が短くなるほど分解能が高くなる ことが分かる。またアンテナの真下(θ =0)にマイクロ波を照射すると、sin θ の値が0になり分解能が無限大に発散してしまう。よって観測を行うときに はマイクロ波を斜め方向に照射しなければならない。

1.4 InSAR

SAR を用いることで地表からの反射波の位相を得ることができる。この位相にはアンテナから地表までの距離の情報が含まれているが、アンテナと地表の間の距離の往復分を電波の波長で割った端数しかわからないため、そのまま情報として利用することは困難である。そこで地表の同一地点において2回の観測を行い、それらを干渉させ差をとることによって、わずかな距離間の情報を利用することが可能となる。これをInSAR(Interferometry SAR: 干渉 SAR)という。

アンテナと地表との距離 r は、以下のように表される。SAR で実際に得る ことのできる情報は、反射波の強度および端数にあたる位相である。

$$2r_1 = n_1 \lambda + \Delta x_1 \tag{1.2}$$

$$2r_2 = n_2\lambda + \Delta x_2 \tag{1.3}$$

前述のように InSAR では 2 回の観測の位相差を求めることで、アンテナと 地表の間の視線方向の距離の変化を求めることができる。

$$2(r_{2} - r_{1}) = \Delta x_{2} - \Delta x_{1} = \frac{\lambda(\varphi_{1} - \varphi_{2})}{2\pi}$$
(1.4)

SAR 観測によって得られた画像の各ピクセルの信号 c は以下のように複素 数で表わすことができ、実数部 a と虚数部 b が内蔵されている。

$$c_1 = a_1 + ib_1 = d_1 e^{i\varphi^1} \tag{1.5}$$

$$c_2 = a_2 + ib_2 = d_2 e^{i\varphi^2}$$
 (1.6)

Φ:位相 *d*:振幅

2回の信号の位相差は、1回目の観測値に2回目の観測値の共役複素数を かける干渉処理によって求めることが出来る。 InSAR 画像は、この演算を画 像の各ピクセルに行うことで得られる。

$$c_1c_2^* = a_1a_2 + b_1b_2 + i(a_2b_1 - a_1b_2) = a_3 + ib_3 = d_1d_2e^{i(\varphi^{1-\varphi^2})}$$
 (1.7)

初期干渉画像には、求めたい地表の変動による位相変化(変動編)だけでな く、2回の観測で衛星軌道が一致していないために生じる位相変化(軌道編・ 地形編)など、いくつかののノイズが重なっている。

$$\Delta \Phi_{ti} = \Delta \Phi_{deform} + \Delta \Phi_{orbit} + \Delta \Phi_{topo} + \Delta \Phi_{atm}$$
(1.8)

ΔΦ_{ti}:初期干渉画像に見られる編 ΔΦ_{deform}:変動編 ΔΦ_{orbit}:軌道編

したがって、InSAR を用いて地殻変動を求めようとした場合には、これか ら変動縞だけを取り出さなければならない。軌道縞、地形縞は2回の観測時 の衛星の位置から幾何学的に計算することができる。各変数は図1.5及び 図1.6に準ずる。

$$\Delta \Phi_{orbit} = -\frac{4\pi}{\lambda} \Delta R = -\frac{4\pi}{\lambda} Bsin(\theta_0 - \alpha)$$
(1.9)

$$\Delta \Phi_{topo} = -\frac{4\pi}{\lambda} B\cos(\theta_0 - \alpha) \,\delta\theta \qquad (1.10)$$

図 1.5 軌道縞(測地学テキストより)

図 1.6 地形縞(測地学テキストより)

この処理によって変動縞が得られたが、これは衛星の視線方向に平行な成 分のみである。変動縞と地表変位の視線方向成分の関係は式(1.11)のように 表わされる。軌道縞や地形縞とは違い、基線長やアンテナと地表の間の距離 とは関係がなく、位相の変化量は地表の変位量にのみ依存している。位相の 減少はアンテナと地表の間の距離が短くなったことを意味し、その地点で隆 起していることを示している。もしくは衛星が対象地域の東側上空から観測 している場合は東への変位成分を持っていることを示す。逆に、位相が増加 した地点では沈降あるいは水平変位が西への成分を持っているということに なる。

$$\Delta \Phi_{deform} = -\frac{4\pi}{\lambda} \Delta \mathbf{D} \tag{1.11}$$

ΔD:地表変位の視線方向成分

1.5 ALOS2/PALSAR2

2006年に地図作成、災害情報の把握、資源探査などを目的として陸域観測 技術衛星(日本名「だいち」)が宇宙航空研究機構(JAXA)によって打ち上げ られた。「だいち」は2011年まで運用され、その後継機として2014年に打 ち上げられたのが ALOS2(日本名「だいち2号」)である。だいちに比べて、 送信電力の強化、使用する周波数帯域の拡大、2つの独立したビームで受信 を行うデュアルビーム方式、複数の種類の信号を送信するチャープ変調など の新しい技術の採用により、高い分解能、広い観測幅、高い視認性を達成し た、世界に類を見ない高性能のセンサーとなっている。

図 1.7 ALOS2

表 1.1 ALOS2 の仕様

打ち上げ	2014年5月24日	
設計寿命	5年(7年目標)	
軌道高度	約630km	
重量	約2t	
回帰日数	14日	
アンテナサイズ	10m×3m(5枚構成)	
観測波長	Lバンド(23.3cm~24.2cm)	
分解能	1~100m	
オフナディア角	8~70度	
走査幅	25~490km	

PALSAR2 では、新たな観測モード(スポットライトモード)が追加され、最高で $1m \times 3m$ (Azimuth 方向×Range 方向)の分解能を得ることができる。分解能約 10mの ALOS/PALSAR と比べて詳細な形状が判別できるため、地表の様子をより詳しく把握することが可能になった。また、ALOS2 では、ALOS にはない左右観測機能を持たせることなどにより観測可能領域が 3 倍弱程度にまで拡大(870km から 2,320km)し、観測頻度の向上に寄与している。

1.6 研究の目的

2015 年 7 月 3 日に中国新疆ウイグル自治区ホータンで Mw6.4 の地震が発生 した。この地域周辺では過去 20 年間で Mw5.0 を超える地震が今回の地震を 含めて 6 回発生しており、大きな地震が頻発する地域である。

日本では GPS の観測網が十分発達しており、例えば東日本大震災では地震 に伴って発生した地殻変動を詳細に知ることができた。しかし、ホータンで はその限りではなく、GPS を用いた地殻変動の検出は困難である。

まず USGS (United States Geological Survey)のサイトを用いて過去にホ ータンで発生した地震と今回発生した地震のメカニズムを比較する。

本研究では、ALOS2/PALSAR2 が 2014 年 10 月 5 日~2015 年 7 月 26 日に取 得したデータを用いてホータン周辺の InSAR 画像を作成することで、地殻変 動の時空間変化をより詳細に調べることを目的としている。

また、実際に観測された地殻変動のすべり分布を明らかにするため、自身 で断層モデルを作成し、どのようにすべりが起こったかを予測した。

2 観測地域及び用いたデータ

2.1 観測地域

中国の新疆(しんきょう)ウイグル自治区は中国の西端に位置しており、 かつてはシルクロードの重要な拠点の一つであった。この地域はアルタイ山 脈、天山山脈、崑崙(こんろん)山脈といった3つの山脈がタリム盆地、ジ ュンガル盆地の2つの盆地を挟んでいるという特殊な地形をしており、古く より地震が多発している地域である。今回地震の観測を行ったホータンはタ リム盆地の南、崑崙山脈の北麓に位置しており、崑崙山脈から流れるユル ン・カシュ川とカラ・カシュ川に挟まれた都市である。この地域で2015 年7月3日にMw6.4の地震が発生した。

図2.1 ウイグル自治区ホータン(Google Map より)

2.2 用いたデータ

ALOS2/PALSAR2 データには、Ascending 方向と Descending 方向の2種類 がある。本研究では Ascending の Path160, Frame740 を用いて解析を行った。 なお、SAR データの解析には Gamma 社が開発した Gamma Software を用いた。

3 結果

図3.1が今回InSARを用いて作成したInSAR画像である。この画像から断層 を境にして南西側で視線方向に近づき、北東方向で遠ざかっていることがわ かる。また、本地震は逆断層型であり、図3.2より本地震の震源球は過去に ホータン周辺で発生した地震の震源球ともよく一致しており、この地域で発 生する地震としてはよくあるタイプであると考えられる。

図3.1 ホータンで発生した地震におけるInSAR画像

図3.2 過去20年間における北西チベットホータン周辺で発生した地震 (>Mw5)(USGSより)

また、図3.3は実際に2015年7月に発生した地震によって観測された地殻変 動である。

これによって得られた地殻変動の画像を用いて、断層モデル及び断層のす べり分布を推定した。図3.4は作成した地殻変動のモデルであり、表3.1は推 定された断層モデルのデータである。

Point(1)	(230000,4175000,-3300,3000)
Point(2)	(240000,4168000,-3300,3000)
Point(3)	(250000,4158000,-3300,3000)
Point(4)	(250000,4143000,-6300,3000)
Point(5)	(235000,4153000,-6300,3000)
Point(6)	(225000,4160000,-6300,3000)

表3.1	断層	モデル	の推定値
(Mw=6.4	064.	Mow=5.	1234e+18)

図3.5 Strike(横ずれ)方向のすべり分布

図3.5および図3.6よりすべりの横ずれ成分より逆断層成分のほうが大きくなっており、USGSによって得られた震源球によって推定された逆断層であるという結果と一致する。

以上より、InSARの技術を用いることで、2015年7月に発生した地震による 地殻変動を検出することができ、断層モデルおよびすべり分布を推定するこ とができた。

今回の断層モデルでは実際に観測されたものと一致していない部分もある ため、さらに精度の高いモデルを作成する必要があると考える。

また、本研究ではAscending方向のデータのみを用いて地殻変動を検出し たため、Descending方向のデータも用いることでさらに高精度の地殻変動を 検出する必要がある。

4 謝辞

本研究を行うにあたり宇宙測地学研究室の皆様には、多くのご指導・ご協 力をいただきました。ここに感謝の意を述べさせていただきます。

特に指導教官である古屋正人教授には、研究のことだけでなく私の個人的 なことまで幅広く相談に乗っていただき、大変お世話になりました。Matlab の初歩的な使い方から、SAR解析の方法まで様々なことをご指導いただきま した。研究においては今までの大学の講義のように教わることだけでなく、 自分で考えることの大切さを知ることができました。今後も教わったことを 忘れずに過ごしていきたいと考えています。

本研究で用いた PALSAR データは PIXEL (PALSAR interferometry Consortium to Study our Evolving Land surface) において共有している ものであり、宇宙航空研究開 発機構 (JAXA) と東京大学地震研究所との共 同研究契約によりJAXAから提供されたものです。PALSAR データの所有権は 経済産業省およびJAXAにあります。

5 参考文献

JAXA : <u>http://www.jaxa.jp/</u>

Google Map : <u>http://maps.google.co.jp/</u>

国土地理院干涉 SAR: <u>http://vldb.gsi.go.jp/sokuchi/sar/</u>

測地学テキスト: http://www.geod.jpn.org/web-text/top/mokuji.html