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Abstract

We propose a new three-stage approach for surface wave tomography working with new

techniques for surface wave analysis: multi-mode dispersion measurements using nonlinear

waveform inversion and an efficient method to estimate the influence zone about a surface

wave path. These topics are of importance for extending current methods of surface wave

tomography that are commonly based on geometrical ray theory and on the approximation

of great-circle propagation.

A method of fully nonlinear waveform inversion for a path-specific 1-D profile has been

developed using a Neighbourhood Algorithm (NA). Unlike the traditional methods of

waveform inversion which have been based on linearlised inversion techniques, the NA

provides a means to find an ensemble of reasonably acceptable models without any cal-

culations of derivatives with respect to model parameters. With different approaches to

the parameterisation of the shear wavespeed profile, we can find models with significant

differences in velocity variation with depth, which provide similar levels of fit to the ob-

served waveforms. Although the models differ, the calculated phase dispersion for the first

few modes of the surface waves are very close indeed. Therefore the 1-D models derived

from the multi-mode waveform inversion can be regarded as an implicit summary of the

path-specific dispersion for each of the modes.

We also examine an approximate zone of influence around the propagation path for a

surface wave using a technique called Fresnel-area ray tracing (FRT) for surface waves. The

influence zone about surface wave paths, over which surface waves are coherent in phase, is

identified as approximately 1/3 of the width of the first Fresnel zone. The estimate of the

influence zone can be efficiently calculated in laterally heterogeneous structure by using

the FRT technique. This approach makes it possible to efficiently work with finite-width

rays as well as deviations in propagation paths from the great-circle induced by moderate

lateral heterogeneity as revealed by recent tomography models. Such finite-width rays

should be of major benefit in enhancing ray-based surface wave tomography by taking

into account the finite-frequency effects of surface wave propagation.

Utilising these techniques, a three-stage inversion scheme for surface wave tomogra-

phy working with multi-mode phase dispersion maps as a function of frequency has been
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constructed, and then applied to the Australian region. The new approach provides a

means of combining a variety of information, i.e., multi-mode dispersion, off-great-circle

propagation and the finite-frequency effects, in a common framework.

Information of multi-mode dispersion can be extracted from any convenient methods,

such as direct dispersion measurements for the fundamental mode, mode-stripping tech-

nique for higher modes, or using path-specific 1-D profiles as a summary of multi-mode

dispersion. Multi-mode phase speed maps are obtained from ensembles of these observa-

tions using the conventional technique based on the great-circle approximation, and can

then be iteratively updated considering ray-path bending and finite-frequency effects. A

3-D shear wavespeed structure is finally derived from these updated multi-mode phase

speed maps by inverting local dispersion curves for local 1-D shear wavespeed models.

In this approach, the smoothness of the model is controlled not only by the damping of

the linearlised inversion and parameterisation of model space, but also by the influence

zone, which makes it possible to introduce natural smoothing of velocity models based on

physical constraints on surface wave propagation.

Several new 3-D models are derived from different types of inversions, i.e., with or

without the effects of off-great-circle propagation and the influence zone. These models

show a good agreement in large-scale velocity variations, whereas there are some dif-

ferences in small-scale (a few hundred kilometers) features, mainly due to the effects of

natural smoothing caused by the influence zone. More uniform horizontal resolution can

be achieved by the introduction of the influence zone, although the apparent maximum

resolution is somewhat reduced due to the effects of finite frequency of surface waves.

Although the influence zone is of great help to take account of the sampling region

around surface wave paths in tomographic inversion, it does not encompass the entire re-

gion of scattering and diffraction around surface wave paths. More rigorous 2-D sensitivity

kernels based on the Born and Rytov approximations can be constructed, working with

WKBJ representation for surface wave potentials and paraxial ray theory. Such kernels

depend on simple assumptions on a scalar-wave type approximation for surface waves, and

require more computation than the influence zone. However, this type of broader kernels

should be of importance in exploiting the full waveforms of surface waves by including

more complex effects of surface wave scattering.
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1

Introduction

Probing into the Earth’s interior using seismic waves is one of the major themes of seis-

mology, and is essential to enhance our knowledge of the evolution of our planet and of the

interactions between mantle dynamics and surface tectonics, which are closely connected

to the occurrence of earthquakes and volcanic activity. One of the most remarkable jumps

in understanding of the deep structure of the Earth was achieved through the develop-

ment of seismic tomography beginning in the middle 1970’s. Since then, seismologists

have proposed various tomographic models for 3-D Earth structure.

The use of teleseismic body waves have revealed the detailed features of whole mantle;

for example, lateral variations of discontinuities (e.g., Morelli & Dziewonski, 1987; Shearer

& Masters, 1992) and whole mantle 3-D velocity structures (e.g., Dziewonski, 1984; Inoue

et al., 1990; Tanimoto, 1990a; Su et al., 1994; Li & Romanowicz, 1996; van der Hilst et

al., 1997; Widiyantoro et al., 1998; Kennett et al., 1998)

On the other hand, surface waves have been used to retrieve details of crustal and up-

per mantle structures for both regional and global scales in the form of 2-D phase and

group speed structures (e.g., Trampert & Woodhouse, 1995; Ekström et al.,1997; Ritz-

woller & Levshin, 1998) and 3-D shear wavespeed models (e.g., Woodhouse & Dziewonski,

1984; Zhang & Tanimoto, 1993a; van der Lee & Nolet, 1997; Debayle & Kennett, 2000a).

Information from the Earth’s normal modes are also helpful to retrieve long-wavelength

features of the whole mantle structures (e.g., Resovsky & Ritzwoller, 1998, 1999; Ishii &

Tromp, 1999, 2001).

Seismic surface waves are normally the most prominent phase in an observed seismogram

from shallow and intermediate depth sources. This fact arises from the cylindrical-wave

character of surface waves whose decay rate (1/
√
r, where r is distance from the source) is

smaller than that of spherically spreading body waves (1/r). Although surface waves prop-

1
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agate two-dimensionally along the Earth’s free surface, their energy reaches into the deeper

part of the upper mantle, resulting in their dispersive character. Using the dispersion of

surface waves, crustal and upper mantle structures have been extensively investigated by

many researchers. In this thesis, we will start by describing the nature of surface waves,

which are the most powerful tool to probe the 3-D upper mantle structure. Then, we

propose a new approach for surface wave tomography using new styles of surface wave

analysis, which can overcome the limitations in the conventional ray-based methods of

surface wave inversion.

1.1 Surface wave ray theory

Most seismic tomography has been based on ray theory, which provides effective means to

investigate the structure of the Earth. Asymptotic ray theory for surface waves in three

dimensional structures with laterally slowly varying heterogeneity has been developed by

Woodhouse (1974) and Babich et al. (1976), that is equivalent to WKBJ theory for

surface waves (e.g., Dahlen & Tromp, 1998). Such analysis of surface waves is based

on high-frequency approximations and is valid only in laterally smoothly varying media.

Therefore strong velocity variations along a path cannot be treated with these methods.

Although ray theory relies on a high-frequency approximation, in case of the real Earth,

ray theory is known to be a fairly good approximation for long-period surface waves, since

they sample deeper part of the upper mantle where the lateral heterogeneity is not so

large compared to the wavelength.

Woodhouse & Wong (1986) have shown that the perturbations of phase shift, arrival

angle and amplitude anomalies can be represented by linearised integral equations along

a ray. In order to extend the surface wave ray theory, Yomogida (1985) and Yomogida

& Aki (1985) have developed the Gaussian beam methods for surface waves based on

the asymptotic ray theory, and proposed a way to calculate surface wavefields at finite

frequency. Surface wave WKBJ theory has been described in detail by Tromp & Dahlen

(1992a,b).

These studies on surface wave ray theory have been the basis of the surface wave tomog-

raphy. However, there are intrinsic limitations in such theories, which cannot treat scat-

tering and finite frequency effects of surface wave propagation. Wang & Dahlen (1995a)

have empirically obtained a condition for the validity of surface wave ray theory, with an

assumption that the width of the first Fresnel zone must be much smaller than the scale

length of lateral heterogeneity.
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1.2 Surface wave tomography

Almost all surface-wave tomography models have been derived by using the “phase” infor-

mation contained in waveforms based on surface-wave ray theory (e.g., Woodhouse, 1974;

Woodhouse & Wong, 1986) with the approximation of propagation along the great circle.

Other possible types of data which can be used to retrieve the mantle structure based

on ray theory are “polarization” and “amplitude” anomalies, which are sensitive to the

gradients in seismic wavespeed. Polarization anomalies, which can be observed as arrival

angle anomalies of rays, have been shown to have the capacity to retrieve smaller scale

heterogeneity than phase data (Laske & Masters, 1996; Yoshizawa et al., 1999).

Attenuation tomography (Romanowicz, 1995) has been based on the analysis of surface

wave amplitude, but depends on detailed knowledge of the velocity distribution. Ampli-

tude anomalies are sensitive to the second derivatives of the velocity structure, so that fine-

scale changes in the structures may be detected by introducing such a data set (Yomogida

& Aki, 1987; Laske & Masters, 1996). However the analysis of amplitude anomalies still

has some difficulties since the amplitude of observed waveforms are very sensitive to the

local site effects, the calibration of seismometers, knowledge of source mechanisms, and

focusing and defocusing effects.

1.2.1 Global studies

Global studies on the surface wave tomography have initiated in the early 1980’s based

on the simple geometrical ray theory. With the approximation of surface wave prop-

agation along the great-circle, a three-dimensional shear wavespeed model was derived

from a waveform inversion (Woodhouse & Dziewonski, 1984). By measuring dispersion of

fundamental-mode surface waves, global group and phase speed maps have been proposed

(e.g., Nakanish & Anderson, 1982, 1983, 1984). Such dispersion maps are further inverted

for 3-D shear wavespeed models (Montagner, 1986; Nataf et al., 1986). Global anisotropy

maps have also been investigated by using such dispersion measurements (Tanimoto &

Anderson, 1985, Montagner & Tanimoto, 1990, 1991).

In the 1990’s, the number of broadband stations dramatically increased and high qual-

ity three-component broad-band observations became available, which allows us the con-

struction of high resolution phase speed models (Zhang & Tanimoto, 1993b; Trampert &

Woodhouse, 1995, 1996; Zhang & Lay, 1996; Ekström et al., 1997). The highest resolution

global model at present is expanded up to degree 40 in spherical harmonics (Fig 1.1).

Although a number of global models have been proposed, they are very well correlated
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Fig. 1.1. Rayleigh-wave phase speed map at 100 s (Ekström et al., 1997)

in the lower orders for long wavelength structures, showing dominant features of degree 2

(Masters et al., 1982, Su & Dziewonski, 1991).

Most global models have been based only on the dispersion measurements for the fun-

damental mode, because fundamental mode analysis is rather straightforward compared

to the higher modes. Van Heijst & Woodhouse (1997) have proposed a mode-stripping

technique to measure higher-mode phase speeds from a single seismogram and they have

applied this technique to obtain global multi-mode phase speed maps (van Heijst & Wood-

house, 1999). Such an approach is helpful for improving the vertical resolution of the to-

mography models, although this style of mode-stripping can only be applied to paths with

epicentral distances longer than 30 degrees (van Heijst & Woodhouse, 1999). There is sig-

nificant overlap between the higher mode branches and the fundamental mode for shorter

distances, which makes it difficult to separate the contributions from different modes in

an observed seismogram .
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Fig. 1.2. Ray path coverage (top) and shear wavespeed model at 150 km (Bottom) (Debayle & Kennett,

2000a).
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1.2.2 Regional studies

Regional surface wave tomography usually uses a different approach to most global studies.

A common procedure for regional surface-wave tomography is a two-stage method using

waveform fitting, such as partitioned waveform inversion (hereafter referred to as PWI) of

Nolet (1990) and the waveform inversion using secondary observables developed by Cara

and Lévêque (1987, hereafter CL).

Both techniques are based on two separate steps. In the first step, waveforms are

inverted for path-average 1-D models. Then, the assemblage of such path-specific infor-

mation is further inverted for a final 3-D model.

PWI has been applied to many regions on the globe, such as Europe (Zielhuis & Nolet,

1994), the western Pacific (Lebedev et al., 1997), North America (van der Lee & Nolet,

1997; Frederiksen et al., 2001) and Australia (Zielhuis & van der Hilst, 1996; Simons et

al., 1999). A systematic automation method of the PWI has been proposed by Lebedev

(2000) and has been applied to the western Pacific and eastern Asian region.

CL methods have also applied to several regions in combination with a regionalised

inversion technique of Montagner (1986) to derive a 3-D model. Debayle & Lévêque

(1997) applied such a technique to investigate the upper mantle structure in the Indian

Ocean. An automated procedure using this technique has been developed by Debayle

(1999) and applied to the Australian region (Debayle & Kennett, 2000a) and northern

Africa (Debayle, Lévêque & Cara, 2001).

Regional inversions utilise paths with short propagation distance with high density of

ray coverage (e.g., Fig 1.2 a), and the high resolution models (e.g., Debayle & Kennett,

2000a) could resolve down to a scale of a few hundred kilometers (Fig 1.2 b), whilst

the resolving power in the global models is around 1000 km at most. Thus, there are

significant differences in the resolution between the global and regional models (Fig 1.3).

Such differences are mainly due to the use of comparatively long paths for global studies,

which results in smoothing out the small scale features by path-averaging over longer paths

(e.g., Kawakatsu, 1983; Passier & Snieder, 1995).

1.3 Studies on surface wave propagation in complex media

In the existence of strong lateral heterogeneity, the effects from scattering and mode-

coupling cannot be ignored. Kennett (1984) proposed a method to treat the effects of

mode-branch coupling for 2-D structure with strong heterogeneity along the path, by

solving coupled differential equations. This technique has been the basis of many works
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Fig. 1.3. Phase speed maps of the fundamental-mode Rayleigh waves at 100 seconds of a global model (top

panel: Ekström et al, 1997) and a regional (bottom panel) model that is estimated from the 3-D shear

velocity model of Debayle & Kennett (2000a).

on coupled-mode approaches in 2-D and 3-D structures (e.g., Maupin & Kennett, 1987;

Maupin, 1988, 1992; Tromp, 1994; Kennett, 1998a).

First-order scattering theory for surface waves in 3-D structure (e.g., Snieder,1986;

Snieder & Nolet, 1987) can also be useful to treat the effects of local strong heterogeneity.
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In order to take into account appropriate finite-frequency effects in tomography models,

2-D sensitivity kernels have been investigated by some researchers (e.g., Li & Tanimoto,

1993; Li & Romanowicz, 1995; Marquering & Snieder, 1995) considering the coupling

between mode-branches.

Recently 3-D sensitivity kernels have been developed by using coupled surface-wave

modes (Marquering et al., 1998, 1999), the first-order scattering of body waves (Dahlen

et al., 2000) and normal mode theory (Zhao et al., 2000). Such 3-D kernels enable us

to exploit direct inversion to a 3-D model taking into account finite-frequency effects,

although most such techniques require much more computation than simple ray theoretic

methods.

1.4 Limitations in surface wave tomography

Although the success of surface wave tomography based on ray theory reveals detailed 3-D

structures in the upper mantle, there still remain fundamental problems.

In the high frequency approximation of ray theory, a ray does not have a width. However,

the actual seismic waves along a ray path should be affected by a finite area around a ray

due to the finite frequency of wave propagation.

Fresnel areas around a ray path (or the appropriate great-circle) can be used as a guide

to estimate an approximate region around a ray path which has significant effects on

observed waveforms at finite frequency. In conventional regional tomography using path-

average 1-D models, however, it has not been simple to accommodate frequency- and

mode-dependent Fresnel areas around a path.

In both global and regional tomography, most studies have adopted the approximation

of surface wave propagation along the great-circle. This works quite well as long as the

lateral heterogeneity is not very strong, for longer period models (say longer than 40

second). However, the great-circle approximation tends to break down for short period

surface waves (less than 30 seconds), which are more sensitive to the structures in the

crust and uppermost mantle where strong velocity variations exist. Recent high-resolution

tomography models (e.g., Debayle & Kennett, 2000a) have shown existence of moderate

heterogeneity with ±10% velocity variations, which almost reaches the limit of the validity

of simple ray theory with the great-circle approximation. We, therefore, need to take the

effects of off-great-circle propagation into account.

In existence of strong lateral variations of velocity structures, we will also need to think

about the validity of the path-average 1-D models, which have been widely used in most

regional tomography as intermediary information for a final 3-D model. Since waveform



1.5 The scope of this thesis 9

inversions for a path-average 1-D model are, in general, based on the perturbation theory,

we cannot allow large deviations in velocity structures from a reference model.

Hiyoshi (2001) has extensively investigated the capacity for model recovery for two types

of waveform inversion methods using a set of synthetic tests, and has found that linearised

inversion for multi-mode waveforms (Nolet et al., 1986) can provide a good recovery of

the true velocity model of the order of a few percent. By inverting cross-correlograms as

secondary observables (Cara & Lévêque, 1987), around ±8% variations can be recovered

for Rayleigh waves. In either case, the tomographic models obtained from these waveform

inversions seem to be very close or over such limits of velocity perturbation.

1.5 The scope of this thesis

The main emphasis of this thesis is placed on the development of a new approach for

surface wave tomography; a three-stage inversion, which compensates for the defects of

the traditional approach in both regional and global surface wave tomography. Several

new techniques, which enable us to exploit the three-stage inversion, are fully explained

preceding the development of the new approach to tomographic inversion.

In chapter 2, the general features of surface waves and normal modes, which are the

basis of surface wave synthesis, are discussed. Although normal modes can be considered

as standing waves or free oscillations of a spherical Earth, the superpositions of such modes

possess the character of travelling waves and, as a result, synthetic surface waves as well

as long-period body waves can be obtained by superposing normal modes. We further

investigate surface wave propagation in a 3-D structure using synthetic seismograms based

on WKBJ theory with a great-circle approximation. The visualisation of surface wavefields

in a 3-D Earth provide us with various insights into the nature of surface wave propagations

in laterally heterogeneous media. The effects of lateral heterogeneity on surface wave

dispersion and on the behaviour of ray paths are also discussed.

In chapter 3, we develop a new approach to measure multi-mode dispersion of surface

waves employing fully nonlinear waveform inversion with a Neighbourhood Algorithm

(NA) of Sambridge (1999a). We first invert a multi-mode waveform for a path average

1-D model. Thousands of 1-D models are generated using the NA. We find that different

1-D models, which give reasonably good fit to the observations, provide a very similar

character of multi-mode dispersion curves. Thus we will consider such 1-D models as a

dispersion estimator rather than as a representation of the actual Earth model.

In chapter 4, a technique of Fresnel-area ray tracing is developed by using paraxial

ray theory for surface waves in combination with the kinematic and dynamic ray tracing.

This method enables us to evaluate the Fresnel zone in 3-D structures efficiently. From
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the careful analysis of the nature of stationary-phase fields that are equivalent to Fresnel

areas calculated by using the Fresnel-area ray tracing, the approximate influence zone that

significantly affects surface wave fields is investigated.

By using the new techniques explained in chapters 3 and 4, we propose a new approach

for surface wave tomography in chapter 5, reformulating a method of tomography in

three-stage processes. This three-stage inversion is very effective in its computation and

has a number of advantaged over the conventional techniques, for example, we can treat

finite-frequency effects, off-great-circle propagation and multi-mode dispersion in a common

framework for both regional and global surface wave tomography.

In chapter 6, the three-stage inversion for surface waves is applied to the Australian

region. Practical formulations for the new approach are explained and new 3-D Australian

models are displayed. With the inclusion of the effects of off-great-circle propagation and

the influence zone, the configuration of the velocity structure is improved in the new

models. We can also achieve more uniform horizontal resolution since the finite-width

around ray paths has been considered.

In chapter 7, we discuss a preliminary work on 2-D sensitivity kernels for surface wave

phase speed structures using the Born and Rytov approximations, which will provide

a more sophisticated technique for surface wave inversion with considerable increase in

computation time. Such an approach should be of significant importance for the further

development of the techniques of surface wave tomography.

Finally chapter 8 provides a summary of the work in the thesis and introduces a number

of important problems for the future development of tomographic methods using surface

waves.



2

Surface waves in three-dimensional structures

2.1 Introduction

Once an earthquake occurs, the Earth vibrates like a bell with a set of particular frequen-

cies. This phenomenon is well represented by the Earth’s “normal modes” (see e.g., Aki

& Richards, 1980, chapter 8; Dziewonski & Woodhouse, 1983; Woodhouse, 1996; Dahlen

& Tromp, 1998). The concept of such modes is of importance to understand the nature

of surface waves in a spherical Earth because surface wave seismograms (and long-period

body waves as well) can be synthesised by superposing these normal modes. If we consider

small regions in which the curvature of the Earth can be neglected, we can assume a flat

Earth rather than a spherical Earth and “surface wave modes” may be used instead of

normal modes (e.g., Aki & Richards, 1980, chapter 7; Kennett, 1983, chapter 11; Kennett,

1998b).

In this chapter, we will first briefly summarise features of the Earth’s normal modes

and synthetic seismograms calculated from normal mode summation. Subsequently, the

WKBJ approximation for surface waves based on ray and mode theory is reviewed, and

surface wavefields in a 3-D Earth model calculated from the WKBJ theory are displayed.

With the approximation that the propagation of long-period surface waves does not deviate

significantly from great-circles, the computational effort for calculating surface waves all

over the globe can be significantly reduced. We will also show the nature of surface wave

dispersion by calculating approximate arrival time of surface wave trains in global group

speed maps. The behaviour of surface wave rays in phase speed maps are also discussed.

These simple methods for representing surface waves in 3-D structures provide us with a

variety of insights into the nature of the surface wavefield in a 3-D laterally heterogeneous

medium which cannot readily be obtained in other ways.

11
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N=0

N=1

N=2

l

(fundamental mode)

(first higher mode)

(second higher mode)

Fig. 2.1. Oscillations of a string with fixed ends.

2.2 General features of normal modes

The concept of modes of oscillations can be readily understood by considering a string

(length l) fixed at both ends, like a guitar string (Fig 2.1). When one plucks the string,

it vibrates with a particular wavelength (l, l/2, l/3, ...). The motion with the lowest

frequency or longest wavelength is called the fundamental mode, and that of higher fre-

quency with one node is the first higher mode, and with two nodes is the second higher

mode. The actual tone produced by a stringed instrument is determined by combinations

of these modes.

In case of a spherical Earth, the length of the string may be considered as corresponding

to the Earth’s radius, and one end is fixed at the center of the Earth with the displacement

fixed at 0, whilst the other end is the free surface. Unlike a string, the Earth has finite scale

in 3-D and the 1-D structures along the radius are considerably heterogeneous, therefore

the oscillations of the Earth are much more complicated than the case of a string. There

are a large number of modes of the Earth’s oscillation as seen in Fig 2.2 and they can be

calculated numerically for a spherically symmetric Earth by solving coupled differential

equations which are derived from the equations of motion (Takeuchi & Saito, 1972; Aki

& Richards, 1980; Woodhouse, 1988; Dahlen & Tromp, 1998). For an isotropic model,

such normal modes consist of two types of modes; spheroidal and toroidal modes, which

correspond to Rayleigh and Love waves, respectively. All normal modes with frequencies

lower than 30 mHz calculated for PREM (Preliminary Reference Earth Model; Dziewonski

& Anderson, 1981) are shown in the dispersion diagrams (Fig 2.2). Each point in the

diagrams displays a normal mode of the Earth. By taking a summation of all these modes
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Fig. 2.2. Dispersion diagrams for spheroidal modes (top) and toroidal modes (bottom). Vertical axis

shows eigenfrequency and horizontal axis shows angular order. Each point corresponds to a normal mode

calculated from PREM.
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Fig. 2.3. Eigenfunctions nUl (solid line) and nVl (dotted line) of spheroidal mode (top) and nWl of toroidal

mode (bottom) with varying overtone number n. Values above each eigenfunction show the eigen period

for the mode. Angular order l is fixed at l = 30 which corresponds to wavelength of about 1300 km.

with suitable excitation factors, we can construct synthetic seismograms including body

and surface waves for particular frequency ranges as described in section 2.3.

To represent the normal modes, we generally use the notation nSl for spheroidal modes

and nTl for toroidal modes, where n (= 0, 1, 2, ...) is the overtone (or higher mode) number

and l (= 1, 2, ...) is angular order. As shown in section 2.3, the angular order l is related

to the wavelength λ by λ = 2πR/(l + 1
2 ), where R is the radius of the Earth. Several

examples of the eigenfunctions of normal modes computed for PREM are shown in Fig

2.3 and Fig 2.4.

Fig 2.3 shows the variation of the eigenfunctions nUl (vertical component) and nVl (radial

component) of the spheroidal modes and nWl (transverse component) of the toroidal modes

with varying overtone number n and Fig 2.4 shows that with varying angular order l. Such

eigenfunctions can be considered as indicating energy profiles of the modes excited by an

earthquake. As the overtone number n increases (Fig 2.3), the number of oscillation of

the eigenfunctions increases and the energy reaches the deeper parts of the Earth. This

is the reason why higher-mode surface waves can resolve deeper parts of the mantle than

the fundamental mode. A peculiar mode (e.g., 3S30 in Fig 2.3), which has prominent
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Fig. 2.4. Same as Fig 2.3 but with varying angular order l. Overtone number n is fixed at l = 2 which

corresponds to the second higher modes.

amplitude at a particular discontinuity, is a Stoneley mode and represent a trapped mode

at solid-liquid boundaries such as the core-mantle boundary (CMB) and the inner-core

boundary (ICB). When the overtone number n is fixed (Fig 2.4), we can see the variation

of the eigenfunctions with varying period. As the period becomes longer, the shape of

eigenfunctions is elongated toward the deeper part of the Earth, which suggests that the

oscillations with longer period are sensitive to deeper structures.

In the presence of lateral heterogeneity, we need to consider three dimensional variations

of the Earth structure. When the seismic parameters, such as density ρ, P-wave speed α

and S-wave speed β, are perturbed, the eigenfrequencies ω of the Earth’s normal modes

are also perturbed, and this perturbation can be represented to first order as,

δω

ω
=

∫ R

0

{

Kρ(r)
δρ

ρ
+Kα(r)

δα

α
+Kβ(r)

δβ

β

}

dr, (2.1)

where δρ, δα and δβ are the perturbations of density, P-wave speed and S-wave speed,

respectively, δω is perturbation of the eigenfrequency and R is the radius of the Earth.

The integration is taken from the centre of the Earth to the surface. Kρ, Kα and Kβ

are sensitivity kernels which work as weight functions applied to the perturbations of

parameters. Several examples of sensitivity kernels which correspond to the normal modes
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Fig. 2.5. Sensitivity kernels Kρ (dotted line), Kα (dashed line) and Kβ (solid line) for normal modes in

Fig 2.3.

in Fig 2.3 are shown in Fig 2.5. The sensitivity kernels for each mode can be calculated

from the corresponding eigenfunctions and explicit formulations are given in, e.g., Takeuchi

& Saito (1972), Woodhouse (1976) and Dahlen & Tromp (1998). As seen in Fig 2.5, Kα

does not appear for the toroidal mode, since toroidal oscillations do not depend on P-wave

speed, whilst Kβ is dominant in every case, suggesting that surface-wave propagation

depends mainly on S-wave speed even for spheroidal modes. Using (2.1), we can compute

the phase speed perturbation δc for a mode as follows,

δc

c
=

c

C

δω

ω
, (2.2)

where C = dω/dk is the group speed and k is the wavenumber for the mode. When we

investigate the surface wave propagation in laterally heterogeneous media, it is convenient

to extract phase speed structure from a 3-D model since the ray paths of surface waves

depend on such phase speeds. Phase speed maps are apparently 2-D because they do not

depend on the depth explicitly but on frequency. However, they include 3-D information

via the sensitivity kernels in (2.1).
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2.3 Synthetic seismograms by modal summation

The normal modes discussed so far are basically “standing waves” with stationary phases

which correspond to free oscillations of the spherical Earth. Now let us examine how the

superposition of such standing waves form “travelling waves”, particularly for the surface

wave case.

The displacement u at the Earth’s surface can be derived by the superposition of nor-

mal modes in a spherically symmetric Earth (e.g., Aki & Richards, 1980, Dziewonski &

Woodhouse, 1983) from

u(x, t) =
∑

k

Ak(t) sk(x), (2.3)

where sk(x) is the kth normal mode at receiver x. The amplitude for the mode is given

by,

Ak(t) = Mije
(k)∗

ij (xs)

[

1 − exp (ωkt/2Qk) cosωkt

ω2
k

]

, (2.4)

where ωk is an eigenfrequency and Qk is a quality factor which defines the decay rate of

the kth mode, Mij is a moment tensor of a source and e
(k)∗

ij is complex conjugate of strain

tensor at the source location xs.

The displacement field of normal modes sk in a spherical polar coordinate (r, θ, φ) can

be expanded in spherical harmonics Y m
l with angular order l and azimuthal order m as

follows,

sk = r̂ Uk + ∇1 V
k − (r̂ ×∇1) W

k, (2.5)

where ∇1 = θ̂∂θ + φ̂(sin θ)−1∂φ and the scalar functions Uk, V k and W k are represented

by,

Uk =
∞
∑

l=0

l
∑

m=−l

kUl(r) Y
m
l (θ, φ), (2.6)

V k =
∞
∑

l=0

l
∑

m=−l

kVl(r) Y
m
l (θ, φ), (2.7)

W k =
∞
∑

l=0

l
∑

m=−l

kWl(r) Y
m
l (θ, φ). (2.8)

It should be noted that the eigenfunctions kUl, kVl, kWl do not depend on azimuthal

order m because of “degeneracy” (see e.g., Aki & Richards, 1980) which arises as a result

of the symmetry of a spherical Earth. The fully normalised spherical harmonics Y m
l take

the form,
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Y m
l (θ, φ) = (−1)m

[

2l + 1

4π

(l −m)!

(l +m)!

]1/2

Pml (cos θ)eimφ, (2.9)

where Pml (cos θ) are associated Legendre functions.

The quantitative relation between normal modes and travelling waves can be now ob-

tained by using the asymptotic character of the spherical harmonics for large angular order

l. Let us consider a simple case of spheroidal modes generated by a point source which is

located at the pole θ = 0 (Aki & Richards, 1980; Woodhouse, 1996). In this case, the r

component of displacement becomes,

ur(r, θ, φ, t) =
∑

n

An(t)
∑

l

∑

m
nUl(r) Y

m
l (θ, φ). (2.10)

Note that the l dependence in An via strain components of (2.4) (see e.g, Dziewonski &

Woodhouse, 1983) is omitted since it does not affect the travelling wave representation.

For fixed m and large l, the asymptotic expansion of Y m
l (θ, φ) is given by (e.g., Woodhouse

1996),

Y m
l (θ, φ) ∼ 1

π
(sin θ)1/2 cos

[(

l +
1

2

)

θ +
1

2
mπ − 1

4
π

]

eimφ. (2.11)

Since the source is assumed to be at the pole, θ corresponds to the angular distance from

source to receiver, so that the epicentral distance is ∆ = R θ. We can therefore identify

the horizontal wavenumber k as

k =

(

l +
1

2

)

/R. (2.12)

From (2.11) and (2.12), the displacement (2.10) derived from modal summation can be

considered as travelling surface wave which propagate with phase speed c,

c =
ω

k
=

ωR

(l + 1/2)
. (2.13)

An example of observed and synthetic waveforms for the vertical components of long-

period Rayleigh waves calculated from modal summation are shown in Fig 2.6. The

synthetic seismograms are calculated for the PREM model. The excitation of the modes

depends greatly on depth of the source. Generally, deep events excite higher modes quite

well, whereas fundamental modes are dominant for shallow events. In Fig 2.6, the funda-

mental and the first few higher modes are well excited.

2.4 Synthetic seismograms with WKBJ approximation

An alternative way to calculate synthetic seismograms along a ray can be achieved by em-

ploying the WKBJ approximation (e.g., Tromp & Dahlen, 1992a,b). We briefly summarise

the formulation for surface waves based on the WKBJ approximation in frequency domain,
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Fig. 2.6. Vertical component of observed seismogram at NWAO (top) for the event at Vanuatu islands

(lat=14.57◦S, lon=167.19◦E, depth=171.4 km), and full synthetic seismogram (second row) computed for

PREM. All the seismograms are band-pass filtered within 8-30 mHz, and waveforms for the first ten modes

are shown separately.

following the description of Dahlen & Tromp (1998). In the WKBJ approximation, the

surface displacements are assumed to be represented as

u(x, ω) =
∑

mode

∑

orbit

A(ω) exp(−iψ(ω)). (2.14)
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The amplitude term A and the phase term ψ can be divided into source, path and receiver

terms,

A = ArApAs, (2.15)

ψ = ψr + ψp + ψs, (2.16)

where suffices r, p and s represent receiver, path and source. Each term is represented as

follows:

a) Source term

As exp(−iψs) = − i

ω
(M : E∗

s) exp(−iπ
4
). (2.17)

For Love waves, the contraction of the moment tensor M and the conjugate source strain

tensor E∗
s is represented as

M : E∗
s = i(∂rWs − r−1

s Ws) (Mrθ sin ζs −Mrφ cos ζs)

−r−1
s ksWs

[

1

2
(Mθθ −Mφφ) sin 2ζs −Mθφ cos 2ζs

]

, (2.18)

and for Rayleigh waves,

M : E∗
s = Mrr∂rUs + r−1

s (Us −
1

2
ksVs) (Mθθ +Mφφ)

+i(∂rVs − r−1
s Vs + r−1

s ksUs)(Mrφ sin ζs +Mrθ cos ζs) (2.19)

−r−1
s ksVs

[

Mθφ sin 2ζs +
1

2
(Mθθ −Mφφ) cos 2ζs

]

,

where ζs is the azimuth measured counter-clockwise from south, rs is the radius of the

source depth, ks is the wavenumber at the source, and Us,Vs and Ws are eigen functions at

the source. The notation used for the moment tensor is that for Harvard CMT solutions.

b) Path term:

Ap exp(−iψp) = (8πk| sin ∆|)−1/2 exp(−
∫ ∆

0

ω

2CQ
d∆) exp i(−

∫ ∆

0
kd∆ +M

π

2
), (2.20)

where k, C and Q are the local wavenumber, group speed and quality factor, which are

computed for local 1-D structures. ∆ is the epicentral distance, M = s − 1 and s is the

ray orbit number (s = 1, 2, 3, ...). On a spherical Earth, the epicentral angular distances

for odd and even orbit are given by

∆ =











(s− 1)π + φ : odd

sπ − φ : even,
(2.21)

where φ is the angular distance of a minor arc. The integration term over local wavenumber

in (2.20) can be represented as
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ksum =

∫ ∆

0
kd∆ =











1
2(s − 1)kgc + kminor : odd

1
2skgc − kminor : even,

(2.22)

where

kgc =

∮

kdφ, kminor =

∫ φ

0
kdφ. (2.23)

The other integration in terms of attenuation in (2.20) can be expressed in a similar way.

c) Receiver term:

Ar exp(−iψr) =























U : vertical

−iV : radial

iW : transverse,

(2.24)

where U , V and W are the eigenfunctions at receiver.

The normalisation convention of eigenfunctions in the above formulation is as follows,

cCI1 = 1 (2.25)

where c is phase speed, C is group speed and

I1 =















∫ a

0
ρ(U2 + V 2)r2dr : Rayleigh wave,

∫ a

0
ρW 2r2dr : Love wave.

(2.26)

2.5 Surface wave propagation in a 3-D model

For a complete representation of surface wavefields in a 3-D structure, some numerical

scheme such as finite difference and spectral methods have been the most popular ap-

proaches. However, such numerical approaches require a huge amount of computation. As

a simplified way to obtain surface wavefields in a global 3-D structure, a ray theoretical

approach may be useful since it does not take too much computation time, although we

cannot consider scattering effects from heterogeneous structure.

In order to visualise the nature of surface wave propagation in a 3-D structure, we have

adopted a ray theoretical approach to calculate surface wavefields on a sphere. A global 3-

D Earth model, 3SMAC (Nataf & Ricard, 1996; Ricard et al., 1996), is used for the surface

wave computation. Some information, which is not contained in the 3SMAC model (e.g.,

lower mantle structure, a quality factor Qκ for compressional waves), is substituted by

PREM. The phase speed maps of Love and Rayleigh waves at 100 seconds computed from

3SMAC are shown in Fig 2.7.

The WKBJ response is calculated for 16200 points on the sphere, with 2◦ sampling in
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Fig. 2.7. Phase speed maps of Love (top) and Rayleigh (bottom) waves at 100 seconds calculated from

3SMAC by using anisotropic PREM as a reference model. Note that pale blue regions in the Love wave

model show slight low velocity anomaly.

both azimuth and distance from the source. Note that the total number of grids is the

same as 3SMAC, but the location of the grid points are different. This can be interpreted

as that the source is assumed to lie at the North Pole and surface displacements are

calculated at crossing points of meridians and parallels of latitude at every 2 degree. The

synthetic seismograms are then band-pass filtered within the range 6 - 15 mHz.

A source is introduced near Halmahera, Indonesia with the source mechanism shown

in Table 2.1, and the radiation pattern of Love and Rayleigh waves calculated from the

absolute values of (2.17) are shown in Fig 2.8.

Snapshots of fundamental mode Rayleigh and Love waves at 600, 800 and 1000 seconds



2.5 Surface wave propagation in a 3-D model 23

event location lat: 1.2◦ lon: 127.8◦ depth: 15 km

moment tensor (exp=26) Mrr = −0.34 Mθθ = 0.97 Mφφ = −0.63

Mrθ = −0.04 Mrφ = −1.30 Mθφ = −2.85

Table 2.1. Source parameters for the event used in this study.

SOUTH 0.2

EASTWEST

NORTHLove

SOUTH 0.2

EASTWEST

NORTHRayleigh

Fig. 2.8. Radiation patterns of Love (left) and Rayleigh waves (right) calculated from the absolute value

of the source term in (2.17).

are displayed in Fig 2.9. The black and white stripes are clearly distorted in and around

Australia compared to the surrounding oceanic regions. Although the evolution of the

surface-wave fronts may not be clear, the dispersive character of surface waves clearly ap-

pear as thick circular belts. Unfortunately, because of the different radiation patterns for

Love and Rayleigh waves, they do not sample the same regions with the same sensitivity.

Both types of surface waves, however, are strongly affected by the lateral heterogeneities

of the Australian Continent. For example, a phase advance in the western part of Aus-

tralia compared to the eastern part is apparent for Love waves, and strong effects from

the continent-ocean boundary are clearly seen at the western margin of the Australian

Continent for Rayleigh waves.

Fig 2.10 shows snapshots of Love and Rayleigh waves at 2500, 3000 and 3500 seconds.

Note that the view point is different from Fig 2.9, but the surface waves are radiated from

the same event. The distortion of wavefronts due to lateral heterogeneities are apparent

for both Love and Rayleigh waves. The Love waves are affected by the low phase speed

in the north Atlantic and high phase speed in Greenland and North America. Rayleigh

waves radiated from this event propagate very interesting paths. By an elapsed time of

2500 seconds, Rayleigh wave near the Black Sea and the Caspian Sea shows a slight phase
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Fig. 2.9. Phase speed maps of Love (top left) and Rayleigh (top right) waves at period of 100 seconds.

Snapshots of fundamental mode Love (middle) and Rayleigh (bottom) waves passing through the Aus-

tralian Continent. The source location is marked with the cross.
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Fig. 2.10. Same as Fig 2.9 but passing through the Eurasian and African Continents. Note that the event

is the same as Fig 2.9.
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Fig. 2.11. Group speed maps of Larson & Ekström (2001) for fundamental-mode Love (left panels) and

Rayleigh (right panels) at 50 s (top) and 100 s (bottom).

delay caused by passing through slow velocity anomaly regions around the Himalayas. This

delayed portion is further affected by the slow velocity anomaly around the Mediterranean,

whereas the surrounding parts of the wavefront pass through the high velocity region of

Europe and African Continent, resulting in a strong deviation of the wavefront as seen in

the snapshot at 3500 seconds.

2.6 Surface wave dispersion in 3-D media

In order to further investigate the dispersive behaviour of surface waves in laterally hetero-

geneous structure, we calculate the wavefronts for surface waves by estimating surface-wave

travel times using global group speed models of Larson & Ekström (2001) in Fig 2.11.
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Fig. 2.12. Representation of fundamental-mode Love and Rayleigh waves radiated from a source near coast

of the southern Peru, which is indicated with a cross.

Approximate arrival time of surface wave trains are estimated from these group speed

maps at periods ranges between 35 and 100 seconds. Surface wave arrivals that are equiv-

alent to wavefronts are displayed in Fig 2.12 to 2.14 with varying width of line segments,

which is wider for longer periods. We simply evaluate the approximate arrival times from

the group speed maps without considering the effects of radiation from the source.
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Fig. 2.13. Same as Fig 2.12 but at 30 minutes with different view points.

It is apparent that the behaviour of surface wave dispersion depends strongly on the

paths. Since a source located near the coast line of the southern Peru corresponding to

the very large event in June 2001 is chosen, we can clearly see the significant differences

in dispersion characters of surface waves radiated in different directions. We can see more

severe dispersion for both Love and Rayleigh waves radiated to the east of the source,

propagating inside the South American Continent, whilst surface waves radiated towards

the west, travelling in the Pacific Ocean, do not show such strong dispersion.

We can also see in Fig 2.12 that the nature of surface wave dispersion is different for

wave paths passing through the ocean and continent. For the paths in the Pacific Ocean,

shorter period waves (thiner lines) travel faster than the longer period waves (thicker

lines), whereas, for the paths in the South American Continent, longer period waves tend

to travel ahead of shorter period waves. Such phenomena are strongly affected by the

differences in crustal and uppermost mantle structures.

In Fig 2.13, surface waves at the same elapsed time of 30 minutes are displayed with

different view angles. The differences in the dispersive natures explained above are clearly

identified. Moreover, we can also see different character in the Love and Rayleigh waves.

Rayleigh waves at 30 minutes show a similar length of ray segments for paths radiated

toward both the east and west from the source, indicating the existence of strong dispersion

for both paths, although the behaviour of long and short period waves are opposite.

However, Love waves show significant differences in dispersion depending on the paths in
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66 (min) 

Fig. 2.14. Same as Fig 2.12 but at 66 minutes looking at the map from the other side of the source.

Fig 2.13, that is, we cannot see significant dispersion in the paths in the Pacific, whereas

there is much more apparent dispersion in the paths passing through the other regions.

In Fig 2.14, wavefronts at 66 minutes are displayed, showing surface waves coming

into an antipode on the other hemisphere of the Earth. We can see obvious distortion

of wavefronts, indicating more significant effects from the lateral heterogeneity on paths

travelling long distances.

Although we have employed simple methods to estimate the surface wavefields in the

previous section and the the nature of dispersion in this section as a means of visually

assessing the nature of surface waves, the results provide interesting insights into the

surface wave propagation in the laterally heterogeneous Earth.

2.7 Surface wave ray tracing in phase speed maps

One of the important effects of lateral heterogeneity on surface wave propagation is that

ray paths depart from the great-circle between the source and receiver. This is particularly

important in applications of the geometrical ray theory to surface wave tomography, in

which the ray paths have been generally supposed to be the great-circle. In this section,

we investigate the behaviour of surface wave ray paths in the Australian region where

there are significant horizontal variations in shear wave speed due to its unique structural

setting.

Because of the dispersive nature of surface waves, ray paths depend on the frequency of
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Fig. 2.15. Ray paths traced on Rayleigh-wave phase speed maps for fundamental (top), first-higher (middle)

and second-higher (bottom) modes together with corresponding sensitivity kernels for P velocity (Kα),

S velocity (Kβ) and density (Kρ) at 100 seconds. Rays are radiated from a source at the center of New

Guinea Island (4.5◦S, 143.5◦E) with varying azimuth from 90◦ to 270◦ for every 3◦. Reference phase speeds

are 4.09 km/s for the fundamental mode, 5.87 km/s for the first higher mode and 7.15 km/s for the second

higher mode.
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interest. Therefore the ray trajectories for surface waves are mainly controlled by phase

speed distributions as a function of frequency (Woodhouse, 1974), which can be derived

from a 3-D velocity structure. In order to estimate two-dimensional phase speed structure,

we employ an 3-D SV velocity model of the Australian continent of Debayle & Kennett

(2000a) as an upper-mantle shear wave speed structure and the rest of the structural

parameters (P wave speed, density andQ) are derived from PREM. The crustal corrections

are made using 3SMAC (Nataf & Ricard, 1996) and PREM is used as a reference model

to compute phase speed perturbations.

Surface wave rays are traced in the Rayleigh-wave phase speed maps for the first three

modes (the fundamental, first-higher and second-higher modes) at 100 and 40 seconds

period using phase speeds estimated from the 3-D shear wave speed model. In Fig 2.15

and 2.16, the surface wave rays traced in these phase speed structures are drawn on each

phase speed map together with the corresponding sensitivity kernels of the dispersion with

respect to P and S wave speed and density. In these maps, we can see the clear effect of

lateral heterogeneities upon the behaviour of ray paths traversing the phase speed maps,

and this effect becomes more significant in phase speed models that are sensitive to the

shallow part of the mantle.

At 100 seconds period in Fig 2.15, the deviations of rays from the great circle are not

so large except for a few regions such as the ocean-continent boundaries and in eastern

Australia where strong velocity jumps exist. For the higher-modes, which sample much

broader ranges of depth in the upper mantle, the perturbations of phase speed are smaller

and as a result the path deviations are weaker.

In the shorter period models at 40 seconds period (Fig 2.16), the phase speed pertur-

bations are more pronounced, especially for the fundamental-mode, and off-great-circle

propagation and multi-path effects become apparent in this model. For the first-higher

mode, path deviations are still obvious, whereas for the second-higher mode, they are not

so significant. Thus, we may say that the off-great-circle propagation may need to be

taken into account only for the fundamental mode and the first-higher mode in shorter

period models, and the higher modes (from the second upwards) can be described quite

well by the great-circle approximation.

It is worth noting that the appearance of the fundamental-mode phase speed maps at 40

seconds differs considerably from the higher-mode maps. This is because shorter-period

fundamental-mode surface waves are sensitive only to the shallow layers (the crust and

uppermost mantle above 150 km), whilst the higher-modes and long-period fundamental

modes are sensitive also to much deeper structure, where velocity perturbations are likely
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Fig. 2.16. Same as Fig 2.15 but at 40 seconds. Reference phase speeds are 3.93 km/s for the fundamental

mode, 4.87 km/s for the first higher mode and 5.39 km/s for the second higher mode.
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Fig. 2.17. Same as Fig 2.16 (top) but for sources at 16◦S, 124◦E (top) and 22.75◦S, 171.48◦E (bottom).

to be smaller. Therefore, the treatment of short-period surface waves is more difficult than

the longer-periods because of the stronger lateral heterogeneity in the shallow layers.

Fig 2.17 shows rays in the fundamental mode Rayleigh-wave phase speed model at 40

seconds with different source locations. These figures shows that distortion of the wavefield

depends significantly on the position of the source. In the top panel of Fig 2.17, the source

is located near the north-western edge of the Australian continent, and the rays radiated

from this source propagate with small distortion inside the continent. However, the rays

begin to be bent noticeably offshore especially in the Coral Sea (to the north-east of
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Fig. 2.18. Two-point ray shooting for three global stations, CAN (top), CTAO (middle) and NWAO

(bottom) with the fundamental-mode Rayleigh wave phase speed map at 40 seconds in Fig 2.16 (top).

Green lines show actual ray-paths and black dotted lines the corresponding great-circle.

Australia). The ray paths shot from a source in the east in New Caledonia (Fig 2.17

bottom) are severely bent by the large velocity gradient in the Coral Sea and the northern

Tasman Sea, causing conspicuous effects of focusing and defocusing.

The results from two-point ray shooting experiment for three global stations (CAN,
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CTAO and NWAO) in a 40 seconds model are displayed in Fig 2.18. In most cases, the

deviation from the great-circle is not so large (the arrival-angle deviations are within 5

degrees), but for some paths, such as a ray path arriving at NWAO coming from eastern

New Caledonia in the bottom panel of Fig 2.18, the arrival angles are about 10 degrees

away from the great-circle and the ray separates from the great-circle by about 200 km

at most. These results suggest that the great-circle approximation is not terribly wrong,

since the minimum scale-length of the lateral heterogeneity in the regional tomography

models is much longer than 200 km, and thus the ray path deviations as seen in these

ray-shooting experiment should not alter the tomography models significantly.

We should note that only the shortest path can be obtained by this kind of two-point ray

shooting. In other words, even if there are multiple rays arriving at a station, we cannot

calculate them simply, although we can expect that the shortest paths should convey the

largest surface-wave energy.

The effects of off-great-circle propagation of surface waves are investigated throughout

this thesis. In particular, in chapter 4, ray-path bending is treated in association with the

studies on the influence zone around surface wave paths, and is further incorporated into

tomographic inversions for phase speed maps in chapter 6.



3

Nonlinear waveform inversion for surface waves - Application

to multi-mode dispersion measurements

3.1 Introduction

Multi-mode information is essential for enhancing the vertical resolution of surface-wave

tomography models. In most regional studies, a common approach is to invert waveforms

of multi-mode surface waves for path-specific 1-D models (e.g., Cara & Lévêque, 1987;

Nolet, 1990). Although such a method should have a good resolution in depth due to

constraints from higher modes, the resultant path-specific 1-D models are quite sensitive

to the model parameterisation and to the reference model used to start the nonlinear

inversion, resulting in some non-uniqueness of 1-D models which achieve adequate fit to

the observations.

Direct measurements of group and phase dispersion have also been utilised in a number

of studies (e.g., Ekström, Tromp & Larson, 1997; Ritzwoller & Levshin, 1998) and allow

the extraction of stable results from observations without any interference from the style

of model parameterisation, although the direct measurements of dispersion can only be

readily applied to fundamental modes.

Techniques for measuring higher-mode phase speeds have mainly been based on the

concept of “mode separation”. One of the traditional ways to isolate overlapping higher

modes is to apply a frequency-wavenumber filter to stacked waveforms observed in a

seismograph network (e.g., Nolet, 1975; Cara, 1978).

Measuring multi-mode dispersion from a single seismogram is not a straightforward is-

sue. Stutzmann & Montagner (1993) used a set of seismograms recorded at a single station

with several sources at different depths in a small epicentral area to obtain reliable multi-

mode dispersion measurements. This requirement of similar source-receiver pairs reduces

the number of available paths dramatically. Van Heijst & Woodhouse (1997) developed a

“mode-branch stripping” technique by using mode-branch cross-correlation functions. In

36
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this method, phase speeds for a mode-branch are measured by fitting the cross-correlation

function for the mode, then the contribution to the mode-branch seismogram is removed

from the observed seismogram and the process is repeated for the next mode-branch.

This technique is quite effective especially in case of longer paths for which higher-mode

branches do not overlap each other on the seismogram (van Heijst & Woodhouse, 1999).

However, it cannot readily be applied to regional studies for which the most paths are

shorter than 30◦ and individual higher-mode contributions can hardly be distinguished in

a seismogram.

In this chapter we propose a new technique of multi-mode dispersion measurement using

nonlinear waveform inversion for surface waves, especially for regional surface waves. The

process of waveform inversion depends on a knowledge of the source mechanism and is

quite sensitive to the starting model with consequent ambiguities in the model. Therefore,

there are advantages in adopting a direct nonlinear approach (without linearisation) which

does not require the evaluation of derivatives with respect to the model parameters. We

adopt the Neighbourhood Algorithm of Sambridge (1999a) (hereafter referred to as NA)

that enables us to explore a model parameter space so as to best fit the observations.

We take a different viewpoint from the current styles of waveform inversion, and do not

consider the path-specific 1-D models as a direct representation of the Earth model, but

instead we interpret them as providing implicit information on multi-mode dispersion for

the source-receiver path. If the perturbations from the reference model are weak it may

be justified to interpret the 1-D models themselves as an average along the path, but the

waveform inversion does not depend on this assumption (Kennett & Yoshizawa, 2002). The

1-D models derived from waveform inversions depend significantly on the parameterisation

and the reference model. Even though models differ, synthetic waveforms for the models

match well to observations, suggesting that the multi-mode dispersion is well represented

through the process of waveform fitting. The multi-mode phase speeds derived for the

various paths can be used to reconstruct multi-mode dispersion maps which will provide

crucial information for reconstructing 3-D shear wavespeed structure.

3.2 Method of nonlinear waveform inversion

The process of waveform inversion is highly nonlinear and the results depend on a knowl-

edge of source mechanism, the parameterisation of the model and the choice of a reference

model. Thus a fully nonlinear approach, which does not require any calculations of deriva-

tives with respect to model parameters, is desirable for the purpose of waveform matching.

We adopt the Neighbourhood Algorithm (NA) of Sambridge (1999a) as a global optimiser
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which explores the model parameter space to find models with a good fit to the data. The

procedure of nonlinear waveform fitting using the NA can be summarised as follows,

(1) Generate a path-specific 1-D shear wavespeed model using NA

(2) Compute a synthetic seismogram for the 1-D model

(3) Calculate misfit between synthetic and observed waveforms

(4) Repeat (1) to (3) until N models are calculated

(5) Compute phase dispersion from the best-fit 1-D model

(6) Estimate reliability of the dispersion measurement

3.2.1 Neighbourhood Algorithm

The NA is based on simple principles and can be used as global optimiser. The details

of the NA are fully described in Sambridge (1999a), and here we only briefly explain the

method. The feature of the NA is that model parameter space is divided into Voronoi

(nearest neighbour) cells defined by a suitable distance norm (usually L2) and a search is

made over models within these cells with the aim of finding smaller misfit. At each stage

(iteration) Voronoi cells are uniquely defined by the previous samples. These irregular

polyhedra guide subsequent samples and the algorithm is able to concentrate sampling in

favourable regions of parameter space. Only two tunable parameters are necessary, and

no derivatives with respect to the model parameters are required. The Neighbourhood

Algorithm takes the following form:

(a) Generate a set of ns models uniformly in parameter space.

(b) Calculate misfit for the latest ns models and choose nr models with smaller

misfit of all generated models.

(c) ns new models are generated from a random walk in the Voronoi cell of each of

nr chosen models.

(d) Repeat (b) and (c).

As mentioned in Sambridge (1999a), the choice of NA parameters ns and nr is arbitrary

and there is as yet no quantitative ways to determine the optimal values of these param-

eters. We have performed a number of trials with various combinations of ns and nr, and

we decided to use the NA method with ns = 10 and nr = 5. 300 iterations are performed

so that 3000 models are generated for each inversion.
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3.2.2 Waveform inversion for 1-D models

The surface waveforms for a reference model with a high-frequency approximation are

approximated as a sum of several modes with simplification of a phase term (e.g., the

WKBJ seismogram in chapter 2),

u0(∆, ω) =
J

∑

j=0

R0
j(ω) exp

[

ik0
j (ω)∆

]

S0
j (ω), (3.1)

where R0
j represents the receiver term, geometrical spreading and attenuation and S0

j

source excitation for j-th mode branch, k0
j is a path-averaged wavenumber along a great-

circle, ∆ is epicentral distance and ω is angular frequency.

In the presence of slight lateral heterogeneity, the waveforms can be described approxi-

mately by a perturbation of the wavenumber,

u(∆, ω) =
J

∑

j=0

Rj(ω) exp
[

i
{

k0
j (ω) + δkj(ω)

}

∆
]

Sj(ω), (3.2)

where Rj and Sj are the receiver and source terms for the actual Earth and δkj(ω) is

the perturbation of wavenumber induced by the variations along the path. From the

asymptotic results of Woodhouse (1974) for a smoothly varying model, δkj is built from

the path-average of the local wavenumber perturbations. The final form is equivalent to

a perturbation of a 1-D model. Throughout this study, Rj and R0
j as well as Sj and S0

j

are supposed to be identical.

When we perform fully nonlinear inversions for surface waveforms, it would be desirable

to undertake a full recalculation of seismograms by computing normal or surface-wave

modes for each new model. However, this places very heavy computational demands and

is not a practical way to perform waveform inversions with a global optimisation technique

like NA, because such global search methods need to generate a large number of models

to find some acceptable models. We have therefore employed perturbation analysis from a

reference model, which does not require any recalculation of the normal modes, to update

the seismograms for new models derived from the NA.

Assuming that the perturbation of wavenumber depends mainly on shear wavespeed

and the perturbation of wavespeed is not so large, δkj can be represented as the result of

the path-averaged shear wavespeed perturbation δβ(z) as a function of depth z,

δkj(ω) =

∫ a

0
Kj
β(ω, z) δβ(z)dz, (3.3)

where a is the Earth’s radius, Kj
β(ω, z) is the Frechét derivative or sensitivity kernel of

the shear wavespeed for the j-th mode (Takeuchi & Saito, 1972; Dahlen & Tromp, 1998)

which are calculated for a reference model. In this study, the P wavespeed, density and Q
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Fig. 3.1. Representation of a model-parameter set using B-spline functions. Three discontinuities at Moho,

400 km and 670 km are included in the model parameterisation and, within each layer, shear wavespeed

perturbation varies smoothly as a sum of the B-splines.

of a reference Earth model are fixed and no perturbation of these variables are considered,

since they have only little influence on the phase speed perturbation for surface waves

in the intermediate period range (50-130 s) which is of interest in our study. δβ can be

expanded into a set of B-spline functions as,

δβ =
∑

i=M

biBi(z), (3.4)

where M is the total number of parameters, Bi(z) is i-th B-spline function and the cor-

responding coefficient bi is a model parameter which should be obtained from the NA

sampling.

An example of the parameterisation of crust and upper mantle using the B-splines

is shown in Fig 3.1. We divide the shear wavespeed model into four layers with three

boundaries at the depth of Moho, 400 and 670 km where Bi(z) is discontinuous. The

number of parameters in each layer is adjustable for each inversion (M1: 0 - Moho, M2:

Moho - 400 km, M3: 400 to 670 km, andM4: below 670 km, the total number of parameters

M =
∑4
i=1Mi).

One of the important factors in waveform inversion based on the perturbation theory is

to choose an appropriate reference model. In this study, we mainly use PREM (Dziewonski

& Anderson, 1981) or PREMC whose upper mantle structure is modified to provide a

better representation of continental regions. The discontinuity at 220 km depth in the

PREM model is modified so that shear wavespeeds around 220 km are smoothly varying.

The crustal structures are corrected using the 3SMAC model (Nataf & Ricard, 1996).

For regional surface-wave paths passing through regions with strong velocity anomalies,

such spherical Earth models cannot be the best choice for the waveform inversion. Since

we treat each observation independently, we do not need to use a single or a particular

reference model for different paths. We have devised a procedure for obtaining a path-

specific reference model by assessing the phase-speed perturbation of the fundamental-
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mode surface waves using a spherical Earth model. The details of the technique are

described in section 3.2.4.

3.2.3 Fitting multi-band-pass filtered waveforms and envelopes

Unlike traditional linearised inversion, NA does not require any derivatives with respect

to model parameters. Therefore any type of misfit function can be used to measure

the difference between observed and synthetic seismograms. In order to obtain the best

fit waveform for all frequency ranges of interest, several band-pass filters are applied to

seismograms and a set of filtered seismograms with different frequency ranges, (Fiu(t), i =

1, nf , where Fi is the i-th filter and nf is number of frequency ranges), is generated for

both observed and synthetic seismograms (Fig 3.2). Before applying the band-pass filters,

a time window is extracted with appropriate group velocity ranges so that several higher

modes as well as fundamental mode are included in a time series.

When the difference between a reference model and a true model is significant, “phase-

cycle skip” can be caused by 2nπ ambiguities in phase and this obscures the fit to the

waveforms. This problem is common in direct phase measurement methods, and the

problem can be generally cured by organising the measurements of the phase of waveforms

from lower to higher frequency. This approach assumes that the phases of the seismograms

are smoothly varying with frequency and that the phase perturbation at lower frequencies

should not be larger than π. Here, all band-pass-filtered seismograms are inverted at the

same time, so that the traditional approach cannot be used. Instead, we introduce the

envelopes, E{Fiu(t)}, for each filtered seismogram, and match these as well. This gives

a significant improvement in waveform fitting when higher-modes are included in a time

window and several peaks exist in an envelope (Fig 3.2). The introduction of envelope

fitting can be regarded as fitting the group slowness, as well as the phase slowness which

dictates the details of waveforms themselves.

The misfit functions are defined from the filtered seismograms Fiu(t) and their envelopes

E{Fiu(t)} as follows,

Φ =

nf
∑

i=1

∫

[
∣

∣

∣Fiu
obs(t) − Fiu

syn(t)
∣

∣

∣

p
+ wi

∣

∣

∣E{Fiuobs(t)} − E{Fiusyn(t)}
∣

∣

∣

p]

dt, (3.5)

where wi is the weighting factor for the i-th filtered envelope. p represents the order of the

misfit norm. We adopt an L3 norm (p = 3) to measure the difference between observed

and synthetic waveforms since this is very sensitive to discrepancies in the waveforms or

envelopes. We have employed five to seven band-pass filters with overlapping frequency

ranges. The envelope fit is helpful for stabilising waveform fitting by avoiding phase cycle
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Fig. 3.2. Examples of waveform and envelope fits for six frequency ranges before (left column) and after

(right column) NA inversion.



3.2 Method of nonlinear waveform inversion 43

skips, especially when we apply an appropriate set of weighting factors {wi}. Too large

or too small {wi} tends to counteract the waveform fit. After several trials, we decided to

use wi = 1.5 for all the waveform inversions in this study.

Since the ranges of frequency and the relative amplitude of the mode branches contained

in a seismogram strongly depend on the excitation at the source, weighting factors can

be applied to both the filtered seismograms and envelopes to enhance or to reduce the

contribution of some particular frequency ranges in the inversion, although we do not take

this into account in the current study.

3.2.4 Data adaptive correction for a reference model

A choice of a reference model to initiate waveform inversion is one of the critical problems

for 1-D path inversions, especially where the surface waves have passed through regions

with strong local heterogeneities. The non-linear inversion with NA is able to retrieve up

to ± 5 % velocity differences quite well. However, the calculation of the ray theoretical

seismogram based on perturbation theory does not allow too large a velocity perturbation.

We therefore need to use a proper reference model which is not too far away from the best-

fitting model.

In regional studies, the most significant velocity variations which affect intermediate to

long period surface waves (50 - 130 s) are generally contained in the uppermost mantle

above 200 to 250 km. The fundamental mode surface waves in such an intermediate period

range can usually be fitted to the synthetics fairly well by perturbing the shear wavespeed

structure of the uppermost part of the mantle.

In order to obtain a reference model which is adaptive to the specific paths, we create

several Earth models by perturbing the shear wavespeed in the upper mantle above 250 km

from modified PREM or PREMC model. The choice of PREM or PREMC is based on the

nature of the regions through which the path passes. Before perturbing the initial reference

models, we correct the crustal structure using 3SMAC model (Nataf & Ricard, 1996). The

P wavespeed, density and Q of the reference model are fixed, and no perturbation of these

variables are considered. We then directly measure the phase speed of the fundamental

mode surface waves using a single-station method (see e.g., Nakanishi & Anderson, 1984)

by comparing the observations with a synthetic seismogram calculated for a perturbed

reference model. We generate several perturbed reference models and calculate the average

perturbation of the measured phase speed from the new reference model within a certain

frequency bands (7 - 20 mHz). The new model with the minimum average phase-speed

perturbation are used as a new reference model for the NA inversion.

An example of the process of searching for a new reference model from PREMC model
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Fig. 3.3. An example of the data adaptive search for the reference model. (a) Dispersion curves of the

fundamental mode Rayleigh wave. The phase speed directly measured from the observations is plotted

with circles and dispersion curves calculated from perturbed reference models are drawn in gray dashed

lines. (b) 1-D shear wave speed profile of PREMC model and the new reference model with 3 % faster

wavespeed in the upper 250 km. (c) Initial waveform fits for original and updated reference models.

is displayed in Fig 3.3. In this example, we generate 10 trial reference models with

shear wavespeed perturbation from -5 to 5 % with 1 % increment. The perturbation

of fundamental-mode phase speed measured from a 3 % perturbed PREMC model has the

minimum average perturbation of 0.29 %. Hence we use the 3 % faster shear wavespeed

model as a new reference model for the NA inversion and recalculate the normal modes

and their eigenfunctions for this model.

The comparison of initial misfits for different reference models are shown in Fig 3.3(c).

The initial misfit for the PREMC model is quite large and major discrepancies are seen for

the fundamental mode. However, the synthetic seismograms for the 3 % faster reference

model matches well to the observed seismogram even before the NA inversion. This

process may seem somewhat coarse, but we do not require rigorous calculations of the
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reference model at this stage, because finding a data adaptive reference model is just

a preliminary process for the subsequent nonlinear waveform inversion. The objective

of the data adaptive procedure for estimating a reference model is to keep the required

perturbations within ±2%, for which the first-order perturbation theory should work well.

The data adaptive selection of a reference model has been adopted in the actual waveform

inversion in section 3.5.

3.3 Multi-mode dispersion measurement

3.3.1 Phase speed estimation from 1-D shear wavespeed models

The 1-D models derived from the nonlinear waveform inversion are quite non-unique and

several different models can provide reasonably good waveform fit. In this study, we do

not interpret such 1-D models obtained from the inversion as an actual Earth model, but

we use them as a representation of multi-mode dispersion of surface waves.

The path-averaged phase speed perturbation for j-th mode, δcj(ω), can be simply cal-

culated from the wavenumber perturbation as follows,

δcj(ω)

c0j (ω)
= −δkj(ω)

k0
j (ω)

, (3.6)

where c0j(ω) is phase speed for a reference model.

Using the ensemble of models sampled by NA, we can estimate approximate errors in

dispersion measurement. Resampling of models using NA would be an appropriate way

to estimate errors from the ensemble of models (Sambridge, 1999b), but the resampling

process is computationally demanding and like any Bayesian approach we would also need

to characterise statistics of all noise processes involved (this is not a trivial task). In this

study, we roughly estimate errors of the dispersion measurements from the standard de-

viations of dispersion curves for the best 1000 models without resampling of the models.

Averages of the best 1000 models are very close to the best-fit models, so that this error

estimation provides quite reasonable error bars around the estimated phase speeds. How-

ever, such rough estimates of errors are not quite sufficient for a quantitative evaluation

of the measured phase speeds. Therefore, we introduce the reliability of the measurement

as a way to evaluate our dispersion estimates.

3.3.2 Reliability of measured phase speed

One of the problems in dispersion measurement from a single seismogram is that it is

not simple to evaluate meaningful errors or the reliability of the measurements. Van

Heijst & Woodhouse (1997) proposed a way to estimate the reliability by working with
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mode-branch seismograms. Following their concept, we now re-define the reliability of the

measured phase speeds which are recalculated from the 1-D models obtained through NA

inversion.

First let us introduce four types of seismograms; the observed seismogram uobs(t), the

full synthetic seismogram usyn(t), the j-th mode-branch seismogram usynj (t) and a residual

seismogram for j-th mode ūsynj (t) (= usyn(t)−usynj (t)). Then we further define the corre-

sponding spectrograms; Sobs(ω, t), Ssyn(ω, t), Ssynj (ω, t) and S̄synj (ω, t) in the frequency-

time (F-T) domain. The spectrograms in F-T domain are obtained from a set of power

spectra of the seismograms with moving time windows.

Before calculating power spectra, all seismograms are normalised with the maximum

amplitude of the observed or the full synthetic seismograms. The power spectra are then

estimated using the Maximum Entropy Method (MEM), which is well known to provide

high resolution spectral estimates even with short time windows (Lacoss, 1971). The

length of the time windows are chosen to be at least twice as long as the longest period

of interest. Examples of the seismograms and their spectrograms are shown in Fig 3.4.

These are calculated for the best-fit waveforms obtained from a synthetic test described in

section 3.4. Such spectrograms in F-T domain are used for defining a measure of waveform

fit and relative power of a mode-branch in the following.

We quantify both the fit between synthetic and observed waveforms, f(ω, t), and the

relative power of j-th mode, pj(ω, t) in a similar fashion to van Heijst & Woodhouse

(1997), but we use spectrograms which can provide a direct estimate of the waveform fit

and the relative power in the F-T domain. Both f and pj are matrices. The components

of the measure of waveform fit are defined as,

fkl(ω, t) = f(ωk, tl) = exp







−

∣

∣

∣Sobs(ω, t) − Ssyn(ω, t)
∣

∣

∣

Ssyn(ω, t)







, (3.7)

where the indices k and l indicate the frequency and time component, respectively. fkl

becomes 1 when the amplitude of spectrogram for observed and synthetic waveforms are

identical, whilst it goes to 0 when the misfit between these two spectrograms becomes

large.

The components of the measure of relative power of the j-th mode, pj , are defined as:

pklj (ω, t) = pj(ωk, tl) = 1 − exp







−Wj(ω, t)

∣

∣

∣Ssyn(ω, t) − S̄synj (ω, t)
∣

∣

∣

S̄synj (ω, t)







, (3.8)

where Wj(ω, t) is a weight function which works as F-T domain filter to suppress the

contribution from other modes, and is defined as the spectrogram of the j-th mode-branch

seismogram normalised by its maximum value, max[Ssynj (ω, t)]
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Fig. 3.4. Examples of observed, full synthetic, 1st-higher mode synthetic and residual seismograms for

the best-fit model derived from a synthetic test (test I) in Fig 3.6. Spectrograms are shown below the

corresponding seismograms, and are used in the reliability analysis in Fig 3.5.
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Wj(ω, t) = Ssynj (ω, t)/max[Ssynj (ω, t)]. (3.9)

pklj becomes 1 when the j-th mode dominates the spectrogram and there is no contribution

from the other modes, and becomes 0 if the j-th component does not contribute to the

spectrogram at all.

The reliability of the measurement can be calculated from the inner product of rows of

the two matrices fkl and pklj at each frequency,

rj(ω) = nt
∑

l

pklj f
kl, (3.10)

where nt is a normalisation factor for the reliability parameter. Since the reliability is

estimated by summing up the product of relative power and waveform fit within a finite

time window, the estimated values depend on the length of chosen window. In this study,

we chose nt so that the reliability becomes 1 when both pj and f are 0.7 for 30 seconds.

This criterion can be interpreted as equivalent to perfect relative power and waveform fit

(both pj and f are 1.0) for a 15 second time window. The maximum value of reliability

depends on the length of the time span in which waveforms are matched and a particular

mode branch is sufficiently energetic.

An illustration of the waveform fit f(ω, t), relative power pj(ω, t) and reliability rj(ω) are

displayed in Fig 3.5 for the results of the synthetic test shown in Fig 3.6. In this example,

the waveform is almost completely recovered and the relative power of the fundamental

mode is almost 1 for 300 seconds in a time window around 0.01 Hz. This results in the

very high values (over 20) of the reliability parameter, because of the normalisation of the

reliability so that it is 1 when perfect recovery is achieved for just a 15 second time span.

3.4 Synthetic tests

The non-linear inversion technique using NA has been applied to synthesised seismograms

of both Rayleigh and Love waves. Synthetic tests have been performed with a uniformly

perturbed 1-D model which contains −5% shear wavespeed perturbation from the PREMC

model between Moho and 400 km. This perturbed model is used as a true model whereas

the PREMC model is used as a reference model for all the synthetic tests in this section.

Two types of tests are carried out using different parameterisations. We used 16 B-

splines (M1 = M4 = 1,M2 = 10,M3 = 4) for the first test (test I) and 12 B-splines

(M2 = 6 and the others are the same as test I) for the second test (test II). An event

in the Vanuatu region with a depth of 171.4 km is used, and waveforms are calculated

for a station NWAO in south-western Australia for which the epicentral distance is 48.7

degree. The input seismograms for a true model (PREMC −5%) are calculated exactly.
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Fig. 3.5. Diagrams of the waveform fit f(ω, t), the relative power in the j-th mode pj(ω, t) and the reliability

parameter rj(ω) for the first five mode-branches calculated from the results of test I in Fig 3.6.
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3000 S-velocity models are generated by NA for each test and we measure phase speed

perturbations obtained from the model with minimum misfit.

3.4.1 Rayleigh waves

The results of two synthetic tests for Rayleigh waves are shown in Figs. 3.5 and 3.6.

Diagrams of waveform fit and relative power for the Rayleigh-wave tests (Fig 3.5) are

calculated from the input seismogram and the best-fit synthetic seismogram for the test I.

In the diagram of relative power for each mode branches, we can see that the fundamental

mode is well separated from the higher modes. This fact results in a higher relative power

for the fundamental mode which further leads to the higher reliability in the phase speed

measurement. The first and second higher modes are also well separated from the other

modes and they also have higher reliabilities.

The final waveform and the input observation match well and the overall features of the

1-D models are well retrieved for both test I and test II (Fig 3.6). The best-fit waveforms

for these tests are almost identical, although the retrieved models show slight discrepancies.

In Fig 3.7 (left column), phase speeds as well as the reliability of the first five mode

branches measured from the best-fit 1-D model for both tests are shown. The errors of the

phase speed measurements are estimated from the standard deviation of dispersion curves

for the best 1000 models. The true perturbation of phase speed is almost completely re-

covered by the inversion especially for the frequency ranges where the estimated reliability

is high enough. If the reliability is low, for example below 0.013 Hz in the 4th-higher mode,

we can see some differences between the true and the retrieved phase speeds. Although

the retrieved path-specific 1-D models have differences in some depth ranges as seen in Fig

3.6, the estimated phase speed perturbations for these models are almost identical which

can be expected from the very good correlation of the best-fit waveforms.

3.4.2 Love waves

The same synthetic tests are also applied to Love wave case. Diagrams of the relative

power for several mode branches (Fig 3.8) show that the higher mode branches as well as

the fundamental mode overlap in a wide time interval. This reduces the relative power of

the fundamental and higher mode Love waves, and results in lower reliabilities than for

Rayleigh waves. This overlap of the fundamental and higher mode Love waves also makes

it difficult to analyse Love wave dispersion accurately.

The differences of the retrieved 1-D models for Love wave tests (Fig 3.9) are much clearer

than those for Rayleigh wave, although both models with minimum misfit are quite close
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Fig. 3.6. Results of NA inversion for a synthesised Rayleigh wave. Density plots of the 3000 shear wavespeed

models derived from synthetic tests with a -5 % perturbed model are shown in left column. The models

are ranked in order of increasing misfit. The best fit model is drawn with a solid white line, the reference

model with a dashed white line and the true model with a dotted white line. The number of parameters

used in test I is 16 (M1 = M4 = 1, M2 = 10 and M3 = 4) and in test II is 12 (M2 = 6 and others are the

same as in test I). The initial and final fits for the waveforms are displayed in the right column together

with diagrams of the fit in the F-T domain. Synthetic waveforms for the true model are drawn with a

dotted line and for the best-fit models with a solid grey line.
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Fig. 3.7. Phase speeds and the reliability parameters of the first five mode branches measured from the

best-fit 1-D models shown in Figs. 3.6 and 3.9. Error bars are estimated from standard deviations of the

best 1000 models.
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Fig. 3.8. Same as Fig 3.5 but for the results of test I in Fig 3.9.



3.4 Synthetic tests 54

900 1000 1100 1200 1300 1400

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

de
pt

h 
(k

m
)

3.5 4.0 4.5 5.0 5.5 6.0 6.5
S-velocity (km/s)

Love wave

depth = 171.4 km

distance = 48.7 deg

initial waveform

(a) test I final waveform and relative fit

0.005

0.010

0.015

0.020

0.025

0.030

fr
eq

ue
nc

y 
(H

z)

900 1000 1100 1200 1300 1400
time (s)

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

de
pt

h 
(k

m
)

3.5 4.0 4.5 5.0 5.5 6.0 6.5
S-velocity (km/s)

1 1000 2000 3000
No. of the best 3000 models

(b) test II final waveform and relative fit

0.005

0.010

0.015

0.020

0.025

0.030

fr
eq

ue
nc

y 
(H

z)

900 1000 1100 1200 1300 1400
time (s)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Fig. 3.9. Same as Fig 3.6 but for a synthesised Love wave.

to the true model. The waveforms calculated for these models are still very similar and

the shape of the input waveform is almost completely recovered.

Phase speeds measured from the best fit models are shown in the right column of Fig 3.7.

As seen in the case of Rayleigh waves, the true phase speed perturbation is reconstructed
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Fig. 3.10. Ray paths for the source-receiver pairs used in the comparative inversions. Five events in the

Banda Sea region and four in the Kermadec region are used, chosen from clusters within a 2◦ × 2◦ zone.

very well for the frequency ranges with high reliabilities. Despite the significant differences

between the 1-D models retrieved with different parameterisations, the estimated phase

speeds are almost identical. This suggests that we can achieve stable multi-mode phase-

speed measurements for sufficiently energetic mode branches in a seismogram even with

overlapping mode contributions. The tests also demonstrate that the reliability parameter

will be a very useful indicator for evaluating measured phase speeds.

From the results of the synthetic tests, we may say that any 1-D model can be a

good representation for multi-mode phase speeds as long as synthetic waveforms are well

matched to observations. The results strongly support our assumption that path-specific

1-D models are a good representation of multi-mode phase dispersion rather than a direct

representation of an actual Earth model. It is also important to note that, even though

the path-specific 1-D models are non-unique, this does not mean that the existing 3-D

models based on such 1-D models are unreliable. We would be able to extract some

robust information on the 3-D structure from an ensemble of the 1-D models for a number

of paths, even if each 1-D model has some degree of non-uniqueness.

3.5 Application to observed seismograms

The nonlinear inversion method is illustrated by application to two sets of surface wave

paths in the Australian region so that we can assess the results of inversion by comparisons

of similar paths. Seismic events in very small areas (within 2◦ × 2◦) in the Banda Sea
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Event (Harvard Catalog) lat. lon. depth (km) scalar moment (dyne · cm)

041991D -6.93 129.51 113.0 1.88 × 1024

101591D -6.52 130.07 146.0 2.05 × 1024

012093H -7.24 128.60 33.0 4.91 × 1024

100593B -6.14 128.92 37.0 4.03 × 1024

122595E -6.94 129.18 150.0 4.70 × 1024

111196A -32.54 -179.05 33.0 1.67 × 1024

100797B -31.84 -178.32 33.0 6.69 × 1024

122598B -33.05 -179.32 78.2 2.90 × 1024

091099F -32.83 -178.27 33.0 6.37 × 1024

Table 3.1. Seismic events used for the data inversion with two cluster of events within

2◦ × 2◦ regions in the Banda Sea and near Kermadec Island.

region in Indonesia and near Kermadec Island are chosen (Table 3.1). The NA inversions

are performed for two sets of paths, from Banda Sea to CAN station in south-eastern

Australia and from Kermadec to TAU station in Tasmania (Fig 3.10).

We first check the radiation pattern from the source using Harvard CMT solutions (e.g.,

Dziewonski et al., 1981), and seismograms which are near the nodal direction of Love or

Rayleigh waves are discarded. Following the criteria of Lebedev (2000) for reducing uncer-

tainties in the phase speed measurements using CMT solutions, the threshold values for

the nodal direction have been determined so that the radiation amplitude is less than half

of the maximum surface wave radiation. An appropriate reference model is constructed

by perturbing the shear wavespeed in the uppermost mantle of PREM or PREMC model,

as explained in section 3.2.4. The instrument response is deconvolved from each of the

waveforms. The NA waveform inversion is then applied to the observation using the ref-

erence model adapted to the data. The frequency bands for the multiple band-pass filters

used in the data inversions are 8-12, 10-15, 12-18, 15-22 and 18-25 mHz. Over 3000 1-D

shear velocity models are obtained from each path inversion and we select the model with

minimum misfit for calculating multi-mode phase speeds of surface waves. The best 1000

models are used to estimate standard errors of the dispersion measurements.

3.5.1 Continental path: Banda Sea to CAN

The paths from the Banda Sea to the CAN station mainly pass through the Australian

Continent where we can expect fast wavespeeds as revealed in recent tomography models

for the Australian region (e.g., Simons et. al., 1999; Debayle & Kennett, 2000a). The

results of the waveform fits and the corresponding diagrams of fit in F-T domain are
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Banda Sea Events: CAN station
Rayleigh wave Love wave
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Fig. 3.11. Final waveform fits and diagrams of the fit in the F-T domain for the paths from the Banda

Sea region to the CAN station.

shown in Fig 3.11. In most cases, the waveform fits are fairly good for fundamental-mode

Rayleigh waves. The waveform match is also quite good for Love waves below 0.015 Hz,

but gets worse for higher frequencies around 0.02 Hz. Surface waves passing through thick

continental crust tend to be contaminated by the effects of strong scattering especially for
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Fig. 3.12. Density plots of 3000 1-D shear wavespeed profiles obtained from NA inversion for the waveforms

shown in Fig 3.11. The best-fit model is drawn with a solid white line and the reference model with a

dashed line.

higher frequencies and Love waves are more sensitive to such shallow structures. Thus, the

discrepancies at the higher frequencies can be ascribed to the effect of strong scattering
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Fig. 3.13. Phase speeds and the reliability parameters for the first three mode branches measured from

the best-fit 1-D profiles in Fig 3.12. Error bars are estimated from standard deviations of the best 1000

models.
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caused by the thick continental crust of Australia which cannot readily be explained by

ray theoretical synthetic waveforms.

Path-specific 1-D models for the paths from Banda Sea to CAN station are displayed

in Fig 3.12. A prominent feature of these models is that they all have high velocities in

the depth range from 100 to 250 km. These high shear wavespeed are well correlated with

a 3-D model of this region (Debayle & Kennett, 2000a). The high wavespeed zone in the

1-D models tends to be thicker for Love wave models which is also consistent with the to-

mographic models for the region with larger SH wavespeed anomalies than SV wavespeeds

(Debayle & Kennett, 2000b). Although the overall features of the retrieved models are

similar, there still remain some discrepancies amongst these 1-D models especially in the

deeper part of the mantle (below 300 km) which in general cannot be well resolved by

surface waves because of the exponential tails of the surface wave eigenfunctions.

Note that such an ambiguity in the 1-D models at depth where there is little sensitivity

can be somewhat reduced by introducing an appropriate a priori information, as used in

most linearised methods of inversion. However, pursuing a realistic and stable Earth model

is not our objective, and the 1-D models are just used to compute the phase dispersion,

we, therefore, do not apply very strong a priori constraints on the model parameters.

The estimated phase speeds for Rayleigh and Love waves are shown in Fig 3.13. For

the fundamental mode, the phase speeds of both Rayleigh and Love wave are considerably

faster than those for the PREMC model over the frequency range with a high reliability

measure, whereas the higher mode Rayleigh waves do not show such a strong velocity

perturbation from the PREMC results. The higher mode surface waves are sensitive to

variations over a wider range of depth in the 1-D models and do not just reflect local het-

erogeneities contained in the upper part of the mantle. As a result, the higher mode phase

speeds usually have smaller perturbation from the reference model than the fundamental

mode. The higher mode Love waves also shows smaller perturbation from the PREMC

model for those frequency ranges with a high reliability measure.

3.5.2 Oceanic path: Kermadec to TAU

We further apply the NA inversion approach to oceanic paths from the Kermadec region

to the TAU station in Tasmania, for which most regional and global tomography models

suggest rather low shear wavespeeds. The final synthetic waveforms are fairly well matched

to the observations (Fig 3.14). Unlike the continental paths, the waveform fits for higher

frequency Love waves are as good as for lower frequencies.

The path-specific 1-D models in this region (Fig 3.15) show a significant low shear

wavespeed zone between 100 to 200 km depth, and they are consistent with the existing
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Kermadec Events: TAU station
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Fig. 3.14. Same as Fig 3.11 but for the paths from the Kermadec region to the TAU station.

3-D model in this region (Debayle & Kennett, 2000a). The deeper parts of these models

especially below 300 km are rather contradictory. This is due to the lack of sensitivity to

the deep structure since the events used in this region are quite shallow (mainly nominal

33 km) and do not excite enough energy in the higher modes, which are essential to
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Kermadec Events: TAU station
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Fig. 3.15. Same as Fig 3.12 but for the waveforms shown in Fig 3.14.

reconstruct deeper structure. It should be emphasised that even though the 1-D models

differ, the waveforms in Fig 3.14 are fitted to a comparable level.

Phase speeds measured from the 1-D models (Fig 3.16) for this region are consistently

slower than the PREM model for both Rayleigh and Love waves. The perturbation of
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Fig. 3.16. Same as Fig 3.13 but from the best-fit 1-D profiles in Fig 3.15.
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the phase speed from the PREM model is larger for the Rayleigh waves than for Love

waves. This also implies a faster SH wavespeed than the SV wavespeed in this region,

which is also seen in the polarization anisotropy model of Debayle & Kennett (2000b).

The measured phase speeds from the different 1-D models agree well for the first few

modes, for the frequency ranges with a high reliability measure. We therefore see again

the effectiveness of deriving multi-mode dispersion measurements from the best-fit 1-D

profile of shear wavespeed.

3.6 Discussion

We have proposed a new technique to measure multi-mode dispersion from a single seis-

mogram using nonlinear waveform inversion with the Neighbourhood Algorithm. The NA

technique itself is based on a simple concept and is quite effective in providing an intensive

search of parameter space for models with smaller misfit. The waveform inversion based

on this global search technique allows us to find models which fit the waveforms well and

makes it possible to measure multi-mode phase speeds accurately. This style of inversion

lets us treat both Love and Rayleigh waves independently using isotropic 1-D models. A

data adaptive procedure has been developed to find an appropriate reference model for

the perturbation analysis used in the synthetic seismogram calculations. The concept of

dispersion measurement from a path-specific 1-D profile is quite simple but the technique

is found to be very powerful.

It is worth noting that we did not apply strong a priori constraints on the 1-D models,

which results in some ambiguity in wavespeed. This is because our objective was not to

explicitly find a 1-D Earth model, but to extract a better waveform fit and, consequently, a

better estimate of phase dispersion. We are able to display the prominent feature of the NA

method, i.e., searching for the entire model space to find an ensemble of acceptable models

including global minima. Such minima are extremely difficult to find with a conventional

linearised inversion technique.

Even though the use of NA as a global search engine requires significantly more compu-

tation than linearised inversion methods, our technique has a capacity to analyse around

8,000 seismograms within a month using a Compaq Alpha workstation with 500MHz pro-

cessor. This may not be as fast as the mode stripping technique (van Heijst & Woodhouse,

1997) but still efficient enough to analyse a large data set for regional scale studies. One of

the advantages of the method that we have proposed in this chapter is that surface waves

with shorter epicentral distances can be used to measure multi-mode phase speed. This

could not be achieved by any other single-station technique for phase speed measurement.

Synthetic tests clearly show that even if there is a substantial overlap of several mode
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contributions in a chosen time window, our fully non-linear approach can treat them in a

proper manner. The reliability measures for the dispersion measurement can be a great

help when we assess the retrieved phase speed, and can also be used as weighting factors

for data in inversions for phase speed maps.

There still remain several aspects of the inversion that can be improved. For example,

allowing the Moho depth to change during the inversion will be crucial if we treat higher

frequency regional phases (more than 30 mHz), although working with such high-frequency

ranges, which will require us to consider effects of scattering or mode coupling, is beyond

the scope of the current work. In this study, the amplitude term has been fixed and

no variation in Q or eigenfunctions has been considered. Such an amplitude variation

could also be incorporated in the current technique, with an increase in the number of

parameters, which have to be considered in the NA inversion. In order to analyse a large

data set with thousands of paths, it would also be desirable to automate all the process

of inversion. One of the possibilities for an automated procedure for waveform fitting is

presented by Lebedev (2000) and his technique can also be applied with our inversion

scheme.

The multi-mode phase speed measured using the new technique can be used to recon-

struct phase speed maps for each frequency and for each mode. This would represent a

linear inverse problem when we assume great-circle propagation. The phase speed distri-

butions can be further improved in an iterative fashion incorporating ray tracing for the

different surface wave modes. Such analysis based on the phase speed measurement allows

us to incorporate different types of information, such as polarization anomalies (Laske

& Masters, 1996; Yoshizawa, Yomogida & Tsuboi, 1999) and finite-frequency effects of

surface wave propagation that will be investigated in the next chapter. Phase speed maps

obtained using such multiple information sources for the higher modes as well as the fun-

damental mode will lead us to more precise images of 3-D Earth models with enhanced

vertical resolution.



4

The influence zone for surface wave paths

4.1 Introduction

Geometrical ray theory has played a major role in many seismological studies, especially

in seismic tomography, because of its simple and efficient description of seismic wave

propagation, although there are crucial limitations in the ray theory.

One of the well known deficiencies of ray theory is that the theory tends to break down

in the presence of strong lateral heterogeneity whose scale-length is comparable to the

wavelength of the waves. Wang & Dahlen (1995a) have obtained an empirical condition

for the validity of surface-wave ray theory by comparing phase, arrival angle and ampli-

tude anomalies obtained from WKBJ approximation and those from coupled-mode theory.

Their condition is derived from a simple assumption that the width of the first Fresnel-

zone should be much smaller than the scale-length of lateral heterogeneity. This statement

has been implicitly recognised since the early stage of the surface wave studies based on

geometrical ray theory, and the assumption of smoothly varying heterogeneity around a

ray path has been an essential part of ray theory for surface waves (e.g., Woodhouse, 1974;

Yomogida, 1985; Tromp & Dahlen, 1992a,b).

One of the ways to overcome the limitations of ray theory is to use scattering theory

for surface waves based on the first Born approximation (Snieder, 1986, 1987; Yomogida

& Aki, 1987). For body waves at finite frequency, sensitivity kernels for travel times or

waveforms have been proposed by many researchers for 2-D cases in the early 90’s based

on the scattering theory (Luo & Shuster, 1991; Woodward, 1992; Yomogida, 1992; Vasco

& Majer, 1993; Li & Tanimoto, 1993; Li & Romanowicz, 1995; Marquering & Snieder,

1995). Such scattering studies have been extended to diffraction studies for 3-D waveform

inversion (Meier et al., 1997) and to the construction of 3-D sensitivity kernels (Marquering

et al., 1998, 1999; Dahlen et al., 2000; Hung et al., 2000; Zhao et al., 2000). One of the

66



4.1 Introduction 67

(a) geometrical ray

(delta function)

ray ray

(b) physical ray

(finite width)

Fig. 4.1. A schematic illustration of influence zone for (a) geometrical ray and for (b) physical ray.

features of these techniques is that they involve an integral over a finite region, whereas

the geometrical ray theory is able to treat the velocity variations only along the ray path.

Studies of surface-wave scattering based on the Born approximation can be quite useful

when local strong heterogeneity exists around a ray path; although the conditions for

the application of such a first-order scattering theory to the real Earth may be rather

restrictive.

In geometrical ray theory based on the high-frequency approximation, the influence zone

around a surface wave path is supposed to resemble a delta function (Fig 4.1). However,

actual surface waves with finite frequency should sample a finite region around a ray path.

Such a ray with finite width can be termed as a physical ray (Červený & Soares,1992).

In this chapter, we focus on determining the effective width of surface wave rays, which

can be defined as the influence zone around a surface-wave ray path, in which surface-

wave phases are coherent and there are only constructive interferences from scattered

waves. As an extension of the ray theory, this zone can be found by considering a bundle

of neighbouring rays around a central ray path. We should note that the objective of

this chapter is to consider a region in which surface waves are coherent and, as a result,

we cannot distinguish waves with a slight deviation due to scattering from a true ray.

Thus obtaining rigorous sensitivity kernels is beyond the scope of this study, but will be

discussed in chapter 7.

In order to investigate the behaviour of rays and to define a particular region surround-

ing a ray path, we first develop a hybrid ray tracing technique, Fresnel-area ray tracing

(FRT) for surface waves on a spherical Earth. The concept was originally developed by

Červený & Soares (1992) for body waves. The FRT technique consists of two standard ray
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tracing techniques, kinematic ray tracing (KRT) and dynamic ray tracing (DRT). KRT is

used to determine the ray trajectories (geometrical rays) in heterogeneous structures, and

DRT provides us with the relative behaviour of neighbouring or paraxial rays. Combin-

ing the solutions from KRT and DRT, a paraxial Fresnel area around a ray path can be

obtained. In order to trace frequency-dependent surface wave rays in a laterally heteroge-

neous structure, we need to evaluate surface-wave phase speeds at each geographical point,

depending on frequency and mode. Therefore, in this study, we restrict our attention to

phase speed structure rather than a 3-D structure, because it is more efficient to work

with off-great-circle propagation. FRT makes it possible to construct the stationary-phase

field around a ray path (rather than just the great-circle) in a laterally heterogeneous

structure. The influence zone around a ray path is estimated from the properties of this

stationary-phase field.

4.2 Formulation for Fresnel-area ray tracing

Since the theory and procedure of surface-wave ray tracing, especially KRT and DRT,

have been well established by efforts of many researchers (e.g., Woodhouse, 1974; Jobert &

Jobert, 1983, 1987; Yomogida & Aki, 1985; Dahlen & Tromp, 1998), we briefly summarise

the essence of these standard ray methods. FRT for surface waves on a spherical Earth is

then developed by combining the solutions from KRT and DRT.

4.2.1 Kinematic ray tracing

The KRT equations in a spherical polar coordinate system (θ, φ) can be represented as a

set of three coupled ordinary differential equations (e.g., Aki & Richards, 1980; Dahlen &

Tromp, 1998),

dθ

ds
= cos ζ, (4.1)

dφ

ds
=

sin ζ

sin θ
, (4.2)

dζ

ds
= sin ζ ∂θ ln c− cos ζ

sin θ
∂φ ln c− cot θ sin ζ, (4.3)

where the dependent variable s is the angular distance along a ray path, ζ is the local

azimuth which corresponds to the propagation direction of a ray and c is the local phase

speed. The geometrical configuration is displayed in Fig 4.2.

When we trace a ray on a spherical Earth, it is convenient to rotate the coordinate

system for the source and receiver pairs so that the great-circle lies on the equator as

seen in Fig 4.2. In the rotated spherical coordinate system, the source location is always
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source
receiver(π/2, 0)
(π/2, ∆)

∆

φ

θ

ζ

Fig. 4.2. A surface-wave ray in a “rotated” spherical-polar coordinate system where the source and receiver

are on the equator. The propagation direction ζ at (θ, φ) is measured from the south.

(π/2, 0) and the coordinate of a receiver at epicentral distance ∆ is (π/2,∆). In this study,

all ray tracing is considered in this rotated spherical polar coordinate.

The sets of differential equations (4.1)-(4.3) can be solved numerically with appropriate

initial conditions for each equation. In the rotated coordinate system the initial conditions

are

θ(0) =
π

2
, φ(0) = 0, ζ(0) = ζ0. (4.4)

When we calculate an arbitrary ray path with a certain take off angle ζ ′ at the source,

we do not need to estimate the initial angle and we can just put ζ0 = ζ ′. For a two-point

shooting problem, the initial angle ζ0 = π/2 + δζ in the rotated coordinate system can

be estimated by ray perturbation theory (Woodhouse & Wong, 1986; Dahlen & Tromp,

1998). The perturbed initial take-off angle can be found from

δζ = − 1

c sin ∆

∫ ∆

0
sin(∆ − φ)∂θδc dφ. (4.5)

The integration in (4.5) is to be calculated along the great-circle. If the lateral heterogene-

ity is not too strong, the linear relation (4.5) offers a fairly good estimate for the initial

angle. To hit the receiver, we need to solve the set of ray tracing equations iteratively. A
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practical numerical scheme for solving these equations is provided by iterative use of the

Runge-Kutta method.

4.2.2 Dynamic ray tracing

The kinematic ray tracing systems are useful for tracing an actual ray, but only provide

us ray trajectories. When we are interested in the wavefield surrounding a ray rather

than just on a line (or ray trajectory), it is necessary to consider the behaviour of the

neighbouring or paraxial rays surrounding the central ray. In order to investigate the

relative behaviour of rays, we can obtain dynamic ray tracing equations by differentiating

the kinematic ray tracing equations (4.1)-(4.3) with respect to the initial take-off angle ζ0,

d

ds

(

∂θ

∂ζ0

)

= − sin ζ
∂ζ

∂ζ0
, (4.6)

d

ds

(

∂φ

∂ζ0

)

= −cot θ sin ζ

sin θ

∂θ

∂ζ0
+

cos ζ

sin θ

∂ζ

∂ζ0
, (4.7)

d

ds

(

∂ζ

∂ζ0

)

= A
∂θ

∂ζ0
+B

∂φ

∂ζ0
+C

∂ζ

∂ζ0
, (4.8)

where

A = sin ζ ∂2
θ ln c+

1

sin θ

[

cot θ cos ζ ∂φ ln c− cos ζ ∂θ∂φ ln c+
sin ζ

sin θ

]

, (4.9)

B = sin ζ ∂φ∂θ ln c− cos ζ

sin θ
∂2
φ ln c, (4.10)

C = cos ζ ∂θ ln c+
sin ζ

sin θ
∂φ ln c− cot θ cos ζ. (4.11)

The initial conditions for these three differential equations may be given by assuming a

point source,

∂θ(0)

∂ζ0
= 0,

∂φ(0)

∂ζ0
= 0,

∂ζ(0)

∂ζ0
= 1. (4.12)

The geometrical spreading J can be evaluated from the solutions of the DRT equations

(4.6)-(4.8) as follows (e.g., Yomogida & Aki, 1985; Jobert & Jobert, 1987),

J(s) =

[

(

∂θ

∂ζ0

)2

+ (sin θ)2
(

∂φ

∂ζ0

)2
]1/2

. (4.13)

If there exist caustics where neighbouring rays cross then

∂θ

∂ζ0
=

∂φ

∂ζ0
= 0, (4.14)

and this condition can be used to determine the locations of caustics.
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k

n

ray

(s, 0)

(s, n)

Fig. 4.3. Ray centered coordinate system. An arbitrary point (s, n) is measured from a point on a central

ray (s, 0).

4.2.3 Paraxial Fresnel area

Using the results from the KRT and DRT, the Fresnel area surrounding a ray can be

estimated based on the paraxial ray theory. The estimated Fresnel area may be called the

“paraxial Fresnel area”. The theory of paraxial ray approximations has been extensively

discussed by Červený (e.g., Červený, 1985, 1987; Červený et al., 1988) for the body wave

case and by Yomogida (Yomogida, 1985, 1988; Yomogida & Aki, 1985) for the surface

wave case, working in ray-centered coordinates.

First let us introduce a ray-centered coordinate system on a spherical surface (s, n): s

corresponds to the distance along the ray path, and n is a coordinate perpendicular to the

ray path and n = 0 on the central ray (Fig 4.3). When we expand the phase ψ in a Taylor

series around a point on the ray (s, 0) at fixed s,

ψ(s, n) = ψ(s, 0) +
1

2
n2M(s), (4.15)

where,

M(s) =
∂2ψ(s, n)

∂n2

∣

∣

∣

∣

∣

n=0

=
ω

c(s)J(s)

dJ(s)

ds
. (4.16)

See Appendix A for explicit formulations of (4.15) and (4.16).

Now let us define the first Fresnel zone surrounding a ray trajectory for a point source

at A and a receiver at B (Fig 4.4). Introducing a point F near the ray path, the first

Fresnel zone is defined in terms of the phase behaviour as follows,
∣

∣

∣ψFA + ψFB − ψBA

∣

∣

∣ ≤ π, (4.17)

where ψFA , ψFB and ψBA are the phases integrated along ray paths A−F , B−F and A−B.
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A (source)

B (receiver)

F

OF

Fig. 4.4. Schematic view of Fresnel area around a ray. The radius of Fresnel zone is defined by the line

F -OF .

Considering the points F at (s, n) and OF at (s, 0), the phases ψFA and ψFB can be obtained

from (4.15),

ψFA = ψOFA +
1

2
n2MOF

A , (4.18)

ψFB = ψOFB +
1

2
n2MOF

B . (4.19)

Both (4.18) and (4.19) are defined along the same ray trajectory, but in different ray-

centered coordinate systems. That is, the coordinate system of (4.18) is (s, n), whilst

(4.19) is (∆ − s, n), where ∆ is the distance from source to receiver along the ray path.

Using the relation ψOFA + ψOFB = ψBA , and substituting (4.18) and (4.19) into (4.17), the

equation for the paraxial Fresnel area can be obtained,

1

2
n2

∣

∣

∣MOF
A +MOF

B

∣

∣

∣ ≤ π. (4.20)

We can finally get the radius of the paraxial Fresnel area measured from the ray path,

n =

[

2π

|MOF
A +MOF

B |

]1/2

, (4.21)

where MOF
A and MOF

B can be expressed as

MOF
A =

ω

c(OF )

J ′
A(OF )

JA(OF )
, MOF

B =
ω

c(OF )

J ′
B(OF )

JB(OF )
, (4.22)

with J ′ = dJ/ds. On inserting (4.22) into (4.21), the final form for the radius of the

paraxial Fresnel area can be expressed as
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∆∆

A B
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OF

(θ, φ)

(π/2, φ)(π/2, 0) (π/2, ∆)

φ ∆   −φ

∆
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B

A

Fig. 4.5. Illustration of an exact Fresnel area on a spherical surface in a rotated spherical-polar coordinate

system.

n =

[

2πc

ω
K

]1/2

= [TcK]1/2 = [λK]1/2 , (4.23)

where T is the period of the wave, λ is a wavelength and K = JAJB/|J ′
AJB + J ′

BJA|.
At caustic points, the geometrical spreading J shrinks to 0, and thus the radius of the

paraxial Fresnel area is also 0. Since the radius of the exact Fresnel area at the point

source is very close to λ/2 in case of the first Fresnel zone (see Appendix B), we may

therefore expect a radius of the Fresnel zone of the same order of λ/2 even at caustics.

4.3 Synthetic tests of Fresnel-area ray tracing

In order to check the validity of the formulation and behaviour of Fresnel zones in later-

ally heterogeneous structure, examples of paraxial Fresnel areas in synthetic models are

displayed in this section.

4.3.1 Comparison with the exact and the paraxial Fresnel area

The exact Fresnel area can be simply calculated for a laterally homogeneous structure

since we can compute the travel time along great-circle without any ray tracing. Let us
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consider the geometrical configuration in the rotated spherical polar coordinates as shown

in Fig 4.5. The definition of the first Fresnel zone, with respect to the path length, can

be written as
∣

∣

∣∆F
A + ∆F

B − ∆B
A

∣

∣

∣ ≤ λ

2
, (4.24)

which provides an alternative form to (4.17). ∆B
A is the epicentral distance and the ar-

clengths ∆F
A and ∆F

B can be expressed in terms of spherical trigonometry,

cos ∆F
A = cos

π

2
cos θ + sin

π

2
sin θ cosφ = sin θ cosφ, (4.25)

cos ∆F
B = cos

π

2
cos θ + sin

π

2
sin θ cos(∆B

A − φ) = sin θ cos(∆B
A − φ). (4.26)

The boundaries of the exact Fresnel area on the spherical surface can be obtained by

solving (4.24)-(4.26) numerically.

Examples of the exact Fresnel area and the paraxial Fresnel area in a laterally homo-

geneous structure for three different periods (25, 40, 100 seconds) are shown in Fig 4.6

(a). We can see that the paraxial Fresnel area is a fairly good approximation of the exact

one, except close to the source and receiver positions where the geometrical spreading

shrinks to 0 and, as a results, the paraxial Fresnel area vanishes. As the period increases,

the agreement between the exact and the approximate Fresnel area becomes worse. As

mentioned at the end of the previous section, we may rectify the problem by assuming

that the paraxial Fresnel area at the source and the receiver as well as at any possible

caustic point have a radius of the Fresnel area of the order of λ/2 for the first Fresnel

zone. Paraxial Fresnel areas with corrections at the source and the receiver are shown in

Fig 4.6 (b). Such corrections are quite useful for matching the paraxial Fresnel areas and

the exact ones even for longer period. The detailed procedure for the correction of the

paraxial Fresnel area is explained in Appendix B.

4.3.2 Hot-spot heterogeneity

We next perform synthetic tests with simple hot-spot models (Fig 4.7). These models

contain a circular region whose radius is 4 degrees and the Rayleigh-wave phase speed is

10 % slower than the surrounding area. These tests give us insight into how the location

of a strong heterogeneity affects the wavefield and the Fresnel area around a ray.

As can be clearly seen in Fig 4.7, if the source is adjacent to a strongly heterogeneous

region, ray paths which are radiated toward the heterogeneity are significantly distorted.

When the source lies slightly away from the heterogeneity but still close enough, we can

see areas of focusing and defocusing behind the circular heterogeneity. The Fresnel areas

shown for each heterogeneity configuration suggest that they are severely affected by the
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25 s 40 s 100 s

Exact and Paraxial Fresnel Areas(a)
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25 s 40 s 100 s

Exact and Corrected Paraxial Fresnel Areas(b)
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0˚

Fig. 4.6. (a) Exact (solid ellipsoid) and paraxial (shaded ellipsoid) Fresnel areas at 25 (left), 40 (middle)

and 100 (right) seconds. Background map is only plotted for the measure of the scale. (b) Same as (a)

but for paraxial Fresnel areas with correction at source and receiver.
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Fig. 4.7. Ray paths in hot-spot models (left) and corresponding paraxial Fresnel areas for 40 seconds

(right). Both regions inside and outside the circle are homogeneous, but the Rayleigh-wave phase speed

inside the circle is 10 % slower than the outside. The locations of the hot-spot are 5◦S, 140◦E (top) and

10◦ S, 140◦E (bottom). Source location is 1◦S, 140◦E for both case. The distances from sources to the

center of the circle are 4◦ (top) and 9◦ degree (bottom). Rays are radiated with the azimuths from 90◦ to

270◦ for every 3◦.

strong velocity gradient in the vicinity of the heterogeneity and, as a results, the radii of

Fresnel zone become smaller in such regions because the ray-path density is very high, in

other words, the surface-wave energy concentrates in that particular area.

We should note here that, with a ray-based technique used in this study, we cannot
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Fig. 4.8. Geometrical configuration of influence zone (shaded area), a geometrical ray (AOFB) and a

perturbed ray (AFB).

treat the full range of complex multi-path effects which can be caused in the presence of a

strong lateral heterogeneity like this hot-spot model, although fortunately such rapid and

strong velocity variations are not seen in most phase speed models.

4.4 Influence zone inferred from stationary-phase field

In the previous section, we have shown the estimates of the first Fresnel zones obtained

from FRT. Now we examine the nature of the variation around surface-wave paths as an

extension of the geometrical ray theory using stationary-phase fields.

4.4.1 Stationary phase field

Using FRT, stationary phases around surface-wave ray paths in laterally heterogeneous

structure can be simply evaluated. First let us define a reference waveform U0 along a

central ray for a frequency ω as,

U0(ω) = A0(ω) exp(−iψ0(ω)), (4.27)

where the complex amplitude termA0 contains the source radiation, the receiver eigenfunc-

tion, geometrical spreading and the spatial variation of amplitude caused by a background

structure, ψ0 is phase of the wave integrated along the ray. Explicit forms for A0 can be

found in many text books (e.g., Aki & Richards, 1980; Kennett, 1983; Dahlen & Tromp,

1998). As in most surface wave studies, the wavefield U0 along a ray path can be cal-

culated as a WKBJ seismogram. Hereafter we abbreviate the notation for the frequency

dependency.
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Now let us assume that the waveforms along perturbed rays which arrive at a receiver

passing through a point F (s, n) near the central ray (Fig 4.8) can be written as,

UF = AF exp(−iψF ), (4.28)

where AF is a perturbed amplitude term for the off-centre ray path and ψF = ψFA+ψFB is a

perturbed phase term integrated along the path. UF represents the perturbed wave and is

to be distinguished from scattered or diffracted waves for which an inclination factor and

different geometrical spreading need to be considered (e.g., Born & Wolf, 1999). From

(4.20), the perturbation of phase between a central ray and neighbouring rays can be

expressed as,

δψF = ψF − ψ0 =
1

2
n2MF (s) (4.29)

where MF (s) =
∣

∣

∣MOF
A (s) +MOF

B (s)
∣

∣

∣ is derived from FRT. Substituting (4.29) into (4.28)

and using (4.27), we obtain a relation between UF and U0,

UF = AF exp(−iψ0) exp(−iδψF ) (4.30)

=
AF
A0

U0 exp(−iδψF ). (4.31)

The exponential term in (4.31) depends only on the background structure, and we can

therefore estimate the stationary-phase field around a central ray path by evaluating this

term.

To investigate the behaviour of the phase term in (4.31), let us consider an explosive

source for which the azimuthally dependent radiation effect can be ignored, and assume

that amplitude variation in the background structure is smooth and differences of epicen-

tral distance along a central ray and along perturbed rays are small enough so that the

differences in geometrical spreading can be ignored. In such circumstances, we can assume

that AF ≈ A0 near the central ray path, and the perturbed waveform can be represented

as,

UF ≈ U0 exp(−iδψF ) = U0 exp

(

− i

2
n2MF

)

. (4.32)

An example of the stationary-phase function exp
(

− i
2n

2MF

)

for ray paths to CAN

and NWAO stations are represented in Fig 4.9 (a). Surface wave rays are traced on a

40-second Rayleigh-wave phase speed model obtained from a 3-D Australian Continent

model of Debayle & Kennett (2000a). Throughout this chapter, this 3-D model is used

to reconstruct 2-D phase speed maps. Crustal corrections for these phase speed maps are

made by using the 3SMAC model (Nataf & Richard, 1996). Contours around each ray

path correspond to the Fresnel zones, and up to the eighth Fresnel zone is shown in this

example.
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Fig. 4.9. (a) Spatial projections of real-part of stationary-phase function for CAN and NWAO stations.

White solid lines are geometrical rays and white dotted lines are corresponding great-circle. Rays are

traced on a 40-second Rayleigh-wave phase speed map. (b) Cross section of stationary-phase field along

white thick-dotted lines in (a). Solid lines are real part of stationary-phase function and dashed lines are

imaginary part. Vertical dashed lines show the first Fresnel zone and shaded areas show 1/3-width of the

first Fresnel zone.

The cross sections of the phase function of both real and imaginary parts at middle of the

source-receiver distance are shown in Fig 4.9 (b). This type of function around a ray path

has previously been presented in the context of Born scattering (Aki & Richards, 1980;

Yomogida, 1992; Marquering et al., 1998). Yomogida (1992) obtained Fréchet kernels,

which have the similar character to the phase functions shown here, considering Fresnel

zones around a ray path for body-wave case. Marquering et al. (1998) used the phase

function for a discussion of the validity of the stationary-phase approximation. Note

the definition of the Fresnel zone implicitly includes a first-order Born approximation.

However, it should be emphasised that our objective is not to try to discuss rigorous

sensitivity kernels considering scattering or diffraction, but to focus on the determination

of a region around the geometrical ray path for surface waves, in which the surface-wave
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phases can be regarded to be coherent, since we wish to understand the scattering region

appropriate to surface wave tomography.

4.4.2 Extended influence zone

In geometrical ray theory, the waveform U0 is evaluated along a ray (or a great-circle).

Thus the influence zone for U0 is supposed to be just like a delta function on the ray (Fig

4.1). We now take a different view point from traditional ray theory to extend the effective

zone for the surface wavefield. We want to find the region about the ray (the influence

zone) in which the wavefield is coherent. An average wavefield Uav over a zone Σ can be

defined as,

Uav ≡

∫ ∫

Σ
UF (sr, 0; s, n)dsdn
∫ ∫

Σ
dsdn

, (4.33)

where Σ is an area around the ray on the spherical surface and UF (sr, 0; s, n) is the

waveform along a path which passes through a point (s, n) and reaches the receiver (sr, 0)

(Fig 4.8). Using the paraxial approximation (4.32), the average wavefield can be expressed

as,

Uav ≈ U0

∫ ∫

Σ
exp (−iδψF ) dsdn
∫ ∫

Σ
dsdn

. (4.34)

Thus if we require the average wavefield Uav to be approximately equal to U0, we require

the average to be taken over an influence zone ΣI such that,
∫ ∫

ΣI

exp (−iδψF ) dsdn
∫ ∫

ΣI

dsdn
≈ 1. (4.35)

The expression (4.35) lead us to a necessary and sufficient condition for the influence zone,

exp(−iδψF ) = exp

(

− i

2
n2MF (s)

)

≈ 1. (4.36)

It is clear that (4.36) is sufficient to satisfy (4.35). The necessity of the condition (4.36)

arises from the fact that the denominator in (4.35) is a monotonically increasing real

function whereas the numerator is a complex function which is oscillating along the n-

direction. It may be worth noting that the range of the n-integration should not be

too far away from the central ray, because we assumed that both the spatial amplitude

variation and the differences of epicentral distances between rays should be small in the

region under consideration (see (4.32)). Note that the condition (4.36) is also valid for
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the geometrical ray theory in which n-integration in (4.34) is simply evaluated just on the

central-ray, that is, n = 0; this satisfies the condition (4.36) exactly, i.e., exp(−i0) = 1.

The influence zone for the surface wave paths, which satisfies the necessary and sufficient

condition (4.36), can be readily found from a diagram of stationary-phase function (Fig

4.9 (b)). We can recognise a fairly flat area around a central ray (n = 0) in the real

part of the phase function whilst the imaginary part is close to zero. Now we will focus

on this region to determine the influence zone. For this purpose, we use the condition

for wavefield coherence in an integral form (4.35) to investigate the zone which may have

significant effects on the total wavefield. The condition (4.35) can be rewritten by using

(4.29) as,

I(nI) =

∫ ∆

0

∫ nIW (s)

−nIW (s)
exp

(

− i

2
n2M(s)

)

dnds

∫ ∆

0

∫ nIW (s)

−nIW (s)
dnds

≈ 1, (4.37)

where ∆ is a ray length, W (s) is a half-width of the first Fresnel zone at a point s on the

central ray, and nI is a coefficient for determining the width of a region to be integrated.

nI is normalised to be 1.0 for the first Fresnel zone. Considering the real and imaginary

parts of I(nI), the condition (4.37) can be reformulated as,

Re {I(nI)} ≈ 1 Im {I(nI)} ≈ 0. (4.38)

Fig 4.10 shows diagrams of the real and imaginary parts of I(nI) as a function of the

normalised coefficient nI . The criteria can be satisfied exactly only at the central ray

path. We, therefore, need to set threshold values which satisfy (4.38) reasonably well such

as,

Re {I(nI)} ≥ 0.9 |Im {I(nI)}| ≤ 0.1. (4.39)

At the 1/3-width of the first Fresnel zone (i.e., nI = 1/3), we find that Re {I(nI)} ≈ 0.98

and |Im {I(nI)}| ≈ 0.1 (Fig 4.10), which satisfies the condition (4.39). This area can be

regarded as the influence zone over which the perturbed waveforms are fairly coherent in

phase; giving a constructive interference for surface wavefields within the influence zone,

whilst outside there is rather a destructive interference caused by the rapid fluctuation of

the phase function, as shown in Fig 4.9 (b).

Since the width of the Fresnel zone is proportional to the square root of the phase

differences between the central ray path and a neighbouring ray path (see (4.21)), the

condition on the size of the influence zone can be written in a similar form to (4.17),

|δψF | =
∣

∣

∣ψFA + ψFB − ψBA

∣

∣

∣ ≤ π

9
. (4.40)
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Fig. 4.10. (a) Real part of an integral function I(nI) as a function of coefficients for a distance from the

central ray path nI . Note that nI is normalised so that the nI becomes 1 at the first Fresnel zone. (b)

Same as (a) but for the imaginary part of I(nI). Horizontal dashed lines show the criteria for the influence

zone (see (4.39)) and shaded areas show 1/3-width of the first Fresnel zone (nI = 1/3).

The choice of the 1/3-width of the first Fresnel zone as the influence zone may seem to be

somewhat arbitrary, but this is a reasonable choice as discussed in the following section in

a context of the uncertainties in actual phase speed measurements.
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We should recall that the paraxial Fresnel zone shrinks to 0 at source, receiver and

caustic points. However, the radius of the first Fresnel zone at these points are about λ/2.

Thus the radius of the influence zone at source and receiver is expected to be λ/6. A

similar argument may be applied along the path and the influence zone can be extended

slightly beyond the positions of source and receiver (see Appendix B).

Examples of the influence zones for the ray paths in Fig 4.9 (a) are shown in Fig

4.11 for fundamental-mode Rayleigh waves at 40 and 100 seconds. The width of the

physical rays become wider for longer period waves, because the width of the Fresnel zone

is proportional to the square-root of the product of phase speed and the period of the

waves as shown in (4.23). In Fig 4.12, physical rays for both the fundamental and the

first higher-mode Rayleigh waves at 40 seconds are displayed. These rays pass through a

region with moderate (not smooth) heterogeneities near the continent-ocean boundary in

eastern Australia. For the fundamental mode, the great-circle between source and receiver

grazes along the edge of the influence zone, whilst the ray for the first higher-mode passes

the other side of the great-circle. In such a case, we will need to take into account

both the different influence zones as well as the different ray paths for each mode. Such

effects cannot be treated with the traditional geometrical ray theory and with the great-

circle approximation. Thus, physical rays in phase speed structures provide us with the

possibility to enhance the current methods of surface wave analysis, even with moderate

lateral heterogeneity for which geometrical ray theory and the approximation of wave

propagation along the great-circle tend to break down.

4.4.3 Evaluation of influence zone

We now discuss the nature of the influence zone defined in the previous section. First let us

look at the stationary-phase function in the time domain as a function of distance from a

ray. Fig 4.13 displays the phase function in the time domain with a narrow-frequency band

around 25 mHz (40 seconds) at nI = 0, nI = 1
3 and nI = 1 (where nI = 1 corresponds to

the half-width of the first Fresnel zone). The phase function at nI = 1
3 is quite coherent

with that at nI = 0 with only a very slight phase shift. This small phase shift is equivalent

to the maximum differences in arrival time of a wave along a central ray and that along

a neighbouring ray within the influence zone. The arrival-time delay within the influence

zone can be estimated analytically. The width of the Fresnel zone is proportional to the

square root of the period T of the wave (see (4.23)), so that the 1/3 width of the first

Fresnel zone depends on 1/9 of the period. Since the first Fresnel zone is defined as the

half-period zone, the arrival-time delay δτ for the influence zone can be estimated as,
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Fig. 4.11. Physical rays of the fundamental-mode Rayleigh waves for two paths to CAN and NWAO

stations at 40 seconds (top) and 100 seconds (bottom) with correction at the source and receiver. Shaded

elliptical areas show the influence zone, dashed ellipsoid show the first Fresnel area and dotted lines show

corresponding great-circle.
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Fig. 4.12. Physical rays of the fundamental mode (black solid ellipsoid) and the first-higher mode (gray

shaded ellipsoid) to CAN station. Correction at the source and receiver locations is applied. Geometrical

rays of these paths are shown in black (the fundamental mode) and white (the first-higher mode) dashed

lines. Rays are traced on a 40-second Rayleigh wave phase speed model. A black dotted line shows the

corresponding great-circle.
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Fig. 4.13. Inverse-Fourier-transformed stationary-phase function with a narrow-frequency band around 40

seconds. The phase function in time domain at n = 0 is shown as a solid line, that at n = 1/3n1, where

n1 is the radius of the first Fresnel zone, as a dashed line and that at n = n1 by a dotted line.

T
2 × (1

3)2 = T
18 , which is equivalent to around 5.6 % of the period T . For 40-second surface

waves, δτ ≈ 2.2 seconds.

As we have explained in the previous section, the surface wavefields within the influence

zone are assumed to be coherent. In other words, we cannot distinguish surface waves

along different paths that are passing inside the influence zone. However, phase coherency

tends to be violated as the perpendicular distance from the central ray become large. This

effect can be investigated considering the differences in a path-average phase speed along

the central path and that along a neighbouring path near the edge of the influence zone as

follows. Let us consider the phase of a surface wave along the central ray, ωX/ĉ, and that

along a neighbouring ray, ω(X + δX)/(ĉ + δĉ), where X and ĉ are the ray length along

the central ray and the corresponding path-average phase speed, respectively. δX and δĉ

are the differences in ray length and in path-average phase speeds between the central and

neighbouring rays. Here, we ignore the effect of the initial phase from the source and only

consider the propagation effect on phase, assuming that these phase along different rays

within the influence zone are coherent and approximately identical,

ωX

ĉ
≈ ω(X + δX)

ĉ+ δĉ
. (4.41)

If we put δĉ = εĉ, where ε is a small parameter which corresponds to an uncertainty in

the perturbation of path-average phase speeds along different ray paths, then, ε can be

represented as,

ε =
δĉ

ĉ
≈ δX

X
. (4.42)



4.4 Influence zone inferred from stationary-phase field 87

For our definition of the influence zone, δX = λ
2 (1

3 )2 = λ
18 . Now, let us think about

Rayleigh waves at 40-seconds whose phase speed is around 3.9 km/s. A typical epicentral

distance in regional tomography is around 3000 km. In this case, from (4.42), the difference

in the average phase speed along a central ray and that along a neighbouring ray near the

edge of the influence zone is less than 0.3 % of the phase speed. This value is equivalent

or less than the errors in measured phase speeds, which supports the validity of the phase

coherency within the influence zone. Note that the estimated errors of phase speeds

from (4.42) become large for longer periods, because it is proportional to the wavelength.

Therefore, the coherency in phase within the influence zone gets worse for longer periods.

The above argument for the validity of the phase coherency also raise a very important

aspect of phase speed measurements at finite frequency. The phase speeds of surface

waves are generally measured along the great-circle paths and inevitably have some error

in measurement. As we have seen, the apparent phase speed changes (4.42) introduced

by deviations in ray path within the influence zone will generally be less than the errors

in phase speed measurement. For lower frequency surface waves we can therefore regard

the measured phase speeds as an average over the influence zone, rather than an average

along the great-circle (or the appropriate ray).

Within the influence zone we cannot distinguish scattered waves from bent rays because

they have such similar-phase. We can therefore treat the entire influence zone as equivalent

when inverting for phase speed maps, and employ an area average of the surface-wave phase

over the influence zone. Because this zone is chosen so that there is very little variation

in phase, we do not need to employ rigorous calculation of the sensitivity kernels, with

considerable computational savings.

However, outside the influence zone the phases are not coherent. Once we include

such paths we need to employ full sensitivity kernels around the central ray paths to

accommodate the effects of scattering and diffraction. Such sensitivity kernels for phase

speed structures are discussed in more detail in chapter 7 based on the Born and Rytov

approximations.

The influence zone defined in the previous section is based on a number of assumptions.

However we can justify the validity of these assumptions in the following way. Since the

influence zone is not too wide and lies close to the central ray (Fig 4.11), the azimuthally

dependent radiation effects from a double couple source may be ignored in a good approxi-

mation, except near a nodal direction. Such small width of the influence zone also helps to

justify the assumption of small spatial amplitude variation and also that of small changes

in epicentral distances between rays in the zone. We should note that these assumptions
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become worse as the period of waves becomes longer and as the mode-branch number

increases, because the width of the influence zone becomes wider for these waves.

The finite-width rays can also be used to estimate the limits on lateral resolution in

surface wave tomography. The typical width of physical rays for 40 second Rayleigh wave

with epicentral distances 3000 km is around 200 km. If two physical rays cross over, the

diagonal spread of the cross-over region should be slightly larger than the width of the

influence zone of the rays (Fig 4.11). The estimated lateral resolution for regional surface

wave tomography is around 300 km (e.g., Debayle & Kennett, 2000a). Therefore, the scale

of lateral resolution of the tomography is fairly consistent with that of the width of the

physical rays, indicating the utility of the concept of the influence zone.

4.5 Discussion

By using the FRT technique, we have defined the influence zone for surface waves by con-

sidering a bundle of neighbouring rays around a ray path. Our definition of the influence

zone is that surface waves are coherent in phase within the zone, which implies that the

scattered energy within this zone affects the total surface wavefield in a constructive way.

The estimated width of the influence zone is approximately 1/3 of that of the first Fresnel

zone.

The influence zone for surface waves defined in this study can be simply applied in

2-D phase speed inversions. In such a case, the phase speeds measured from observations

are no longer just a “path average”, but can be regarded as “area average” within the

influence zone. From the perspective of finding a realistic Earth model, the difference

will be a slight blurring of the phase-speed maps. The use of the physical rays is more

appropriate than the use of geometrical rays, in that the realistic finite frequency effect of

wave propagation can be taken into account in tomographic inversion. Vasco et al. (1995)

have applied simple Fresnel volumes for body waves (corresponding to a Fresnel “area”

for surface waves) using a similar technique to this study based on the method of Červený

& Soares (1992). They have shown that tomographic inversions with the Fresnel volumes

provide comparable models with those obtained by using rigorous sensitivity kernels, which

requires considerably more numerical computations.

In most studies of 2-D and 3-D sensitivity kernels, there are prominent variations in

sensitivities along the path, that is, the maximum sensitivities appear in the vicinity of

the source and receiver. Vasco et al. (1995) have also suggested that such variations of

the sensitivity along the path can be considered by normalising the Fresnel volume by its

elliptical cross-section area perpendicular to the path (corresponding to the width of the

Fresnel area in 2-D case). This results in a sensitivity peaked at the source and receiver
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locations. Such an approach can also be applied to the influence zone in this study, when

we apply it to inversions for phase speed maps, and provides a means of coping with errors

in source location. If locations and neighbouring structure of the source and receiver are

fixed, there is then strong latent contributions from the sensitivity kernel, but these do

not influence the actual results.

In the application of the influence zone to surface wave tomography, it may be worth

applying a weight function perpendicular to the central ray to reduce the errors arising

from the slightly larger phase differences near the edge of the influence zone. If scattering

effects are conspicuous in the observed waveforms and we need to consider scattering

effects outside the influence zone, some rigorous calculations for sensitivity kernels will

be necessary to take into account the complex effects of scattering and diffraction, which

may interfere rather destructively with the total wavefield. As long as we are working

with intermediate period waves (say longer than 40 seconds), strong scattering effects are

not expected in the real Earth. However, as the period of interest becomes shorter, we

may need to consider the effects of scattering or coupling between mode branches (e.g.,

Kennett, 1984; Kennett & Nolet, 1990; Marquering et al.,1999). A way to calculate more

rigorous sensitivity kernels based on the first-order scattering of surface waves will be

discussed in chapter 7.

One of the significant advantages of the FRT technique is that off-great-circle propa-

gation can be treated effectively. Since the width of the Fresnel zone around a ray path

depends on the phase-velocity gradient which is evaluated on the central ray, the influence

zone should be obtained around an actual ray rather than around a great-circle. However,

this may not be critical issue, since the great-circle and the actual ray path are very close

each other if the great-circle lies in the influence zone.

The concept of the influence zone also gives us an insight into the validity of the great-

circle approximation which has been widely used in most studies of surface-wave tomogra-

phy. Since the influence zone is defined so that the waveforms within the area are coherent,

we may say that phases of surface waves along rays passing out of the influence zone are

no longer coherent with the phase along the central ray path. In other words, if the great-

circle lies outside of the estimated influence zone for a model, the waves along an actual

ray and the corresponding great-circle should be significantly different, which may result

in mislocation of heterogeneity in tomographic models.

Since the FRT approach relies on paraxial ray theory, which is based on a high-frequency

approximation, a velocity structure should not vary appreciably within a width of the

Fresnel area. Recent tomography models in regional scales (e.g., Debayle & Kennett,

2000a) have shown quite large velocity variations (over ±10%) in the uppermost mantle,
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although these models are still derived from the assumption of wave propagation along the

great-circle. Such models with moderate lateral heterogeneities seem to be at the limit of

the ray-based technique and the great-circle approximation is about to be violated. Even

though our approach is still based on similar limitations to the conventional ray theory,

we may slightly extend the limit of the ray-based method by introducing ray tracing and

considering the effects from surrounding regions about a surface-wave ray path to take

into account the off-great-circle propagation as well as the finite-frequency effects.

The method of FRT is simple and computationally effective and, therefore, allows us

to apply it in large-scale inversions. Although the scattered waves coming from outside

the influence zone cannot be fully treated with this approach, such scattering effects seem

not be so important in the intermediate period range (40-150 seconds). We are now able

to deal with ray paths with finite-width as well as the deviations in propagation from the

great-circle in a simple, computationally efficient form. The new technique of the multi-

mode dispersion measurements for regional surface waves developed in chapter 3 allows us

to reconstruct multi-mode phase speed maps on regional scales. Together with such multi-

mode information and the influence zone for phase speed structures, we can envisage a new

approach for reconstructing 3-D image of the upper mantle from multi-mode surface waves,

which is further investigated in chapter 5. The concept of the influence zone presented

here should be of great help in extending the current methods of surface wave tomography

which have commonly been based on geometrical ray theory and on the approximation of

great-circle propagation.



5

Three-stage inversion: A new approach for surface wave

tomography

5.1 Introduction

Current methods of surface wave tomography are based on multi-stage processes using

either the exploitation of fundamental mode dispersion (e.g., Ekström et al., 1997; Ritz-

woller & Levshin, 1998) or the multi-mode waveform inversion for a path-specific 1-D

model (e.g., Cara & Lévêque, 1987; Nolet 1990).

Global studies generally take the former approach with fundamental mode dispersion,

and a number of high resolution phase speed maps for fundamental mode surface waves

have been proposed (Trampert & Woodhouse, 1995, 1996; Zhang & Lay, 1996; Ekström et

al., 1997). Higher mode information can be also incorporated via mode-stripping technique

(van Heijst & Woodhouse, 1997, 1999), although the use of higher modes has been rather

limited.

Regional surface wave tomography is, in general, based on two-stage inversion methods.

The first stage is multi-mode waveform fitting for a path-average 1-D model. In the

partitioned waveform approach formalised by Nolet (1990), the 1-D models obtained by

waveform fitting are interpreted as the average structure along the path between source

and receiver. The ensemble of path averaged constraints are then used in a linearised

inversion to recover final 3-D structure (Zielhuis & Nolet, 1994). The waveform inversion

is based on linearised inversion with either direct use of the seismograms (Nolet et al.,

1986) or the use of secondary variables based on cross-correlation between observed and

synthetic seismograms (Cara & Lévêque, 1987). Both methods show dependence on the

reference model used for initiating the inversion. In the second stage, a 3-D model is

retrieved from the ensemble of path-specific constraints using linearised inversion as a

form of cellular tomography (Zielhuis & Nolet, 1994), or in a continuous representation

91
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with a Gaussian smoothing, defined by a correlation length of model parameters based on

the continuous regionalisation scheme of Montagner (1986).

The common feature of such different applications is that the path-specific 1-D models

obtained in the first stage of the process are interpreted directly as averages along the

paths. Marquering et al. (1996) has pointed out that, as frequency increases, this path-

average assumption has significant limitations for higher mode information representing

body waves, since the sensitivity of the data is concentrated around the body wave paths.

By considering coupling between the mode branches, improved results for data set with a

large higher mode component can be obtained but with considerable increase in compu-

tation time.

The more common approach for improving tomography models has been to enlarge the

number of paths so that more detailed structure can be recovered with dense path coverage.

For example, for the Australian region, Simons et al (1999) and Debayle & Kennett (2000a)

have used around two thousand paths in inversions using Rayleigh waves. With such path

densities, it is possible to extend the second stage inversion to try to extract azimuthal

anisotropy (Debayle & Kennett, 2000a).

The levels of heterogeneity and heterogeneity gradient revealed in recent tomographic

studies of the upper mantle are probably too large for the path-average approximation to

be applied directly to the 1-D models with the assumption of the surface wave propagation

along the great-circle. However, for the frequency range in which modal interaction can

be neglected, we can use the path-average assumption for the phase of individual mode

contributions and regard the 1-D model as a representation of the character of multi-mode

dispersion along the source-receiver path. This viewpoint is reinforced by investigation of

fully non-linear inversion for surface wavetrains explained in chapter 3, which demonstrates

the possibility of extracting different styles of 1-D models with a comparable fit to data.

Although the models differ significantly, the dispersion of the first few modes over the

frequency range cannot be distinguished.

The existence of large velocity perturbations in the recent tomography models also

warn us to rethink the great-circle approximation for the surface-wave paths as well as

the finite-frequency effects of surface wave propagation. In chapter 4, we have studied the

approximate zone of influence around surface wave paths with careful investigation of a

stationary-phase field around a path. We have shown that the approximate influence zone

can be represented as roughly 1/3-width of the first Fresnel zone. The idea of the influence

zone leads us to an alternative approach with area-average phase speeds rather than the

conventional path-average. Such an approach allows us to incorporate the finite-frequency

effects of wave propagation as well as off-great-circle propagation in tomographic inversion.
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In this chapter, we reformulate the process of surface wave tomography, especially at the

regional scale, into a three-stage process working with multi-mode dispersion. The stages

consist of the extraction of path-specific information by waveform fitting, construction of

multi-mode phase-speed maps as a function of frequency and then a final inversion for

local shear wavespeed properties.

Such an approach has been exploited in earlier studies (e.g., Nataf et al., 1986) based

on observations of fundamental mode surface waves, however, our new scheme offers the

advantage of allowing the incorporation of various styles of information such as multi-

mode dispersion, off-great-circle propagation, and finite-frequency effects within a single

formulation. By working directly with phase speed, we can incorporate the deviation of

paths from the great-circle using ray-tracing for individual modes and take account of the

extended influence zone around each ray path. This approach can be applied not only for

regional studies but also for global studies, and, therefore, will be useful for reconciling

surface wave tomography at different scales.

5.2 Path-average approximations

The path-average approximation which is now widely adopted in most surface wave studies

is based on the analysis of Woodhouse (1974) for surface wave propagation in a strati-

fied medium with slowly varying seismic properties. The propagation of an individual

surface-wave mode can be described by an asymptotic ray theory with a high-frequency

approximation, and the trajectory is controlled by the phase-speed variations in the model.

The local phase speed for the mode is determined by the dispersion characteristics of the

local stratified structure in the column beneath the point of interest. The total phase

along the path is given by the integral of the local wavenumber k. For the jth mode at

angular frequency ω, the phase of surface waves, ψj , can be represented as,

ψj(ω) = ω

∫

rayj

1

cj(s, ω)
ds =

∫

rayj
kj(s, ω)ds, (5.1)

where cj is the local phase speed of the jth mode and the integration of the local wavenum-

ber kj(s, ω) is taken along the ray path for the mode. Considering an average wavenumber

〈kj(ω)〉 along the path with a distance ∆ for the j-th mode, (5.1) can be rewritten as,

ψj(ω) = 〈kj(ω)〉∆. (5.2)

When the ray path is apart from the great-circle between source and receiver, 〈kj(ω)〉 will

be overestimated, because ∆ will be shorter than the true path length.
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As we have shown in chapter 3 (eq. (3.2)), in the presence of slight lateral heterogeneity,

the surface waveforms with the leading-order asymptotic approximation can be expressed

as,

u(∆, ω) =
J

∑

j=0

Rj(∆, ω) exp
[

i
{

ψ0
j (ω) + δψj(ω)

}]

Sj(ω), (5.3)

where ψ0
j is a phase for a reference medium and δψj is the perturbation of phase from a

reference medium along a ray for the jth mode. Sj(ω) represents the excitation imposed

by the source through terms dependent on the source depth. Rj(∆, ω) includes the terms

dependent on receiver depth, the geometric spreading and attenuation of the surface waves.

For a laterally varying medium Sj and Rj are usually evaluated using the structures

appropriate to the source and receiver positions. But, as pointed out by Kennett (1995),

these contributions are not localised and include some path dependency.

The phase perturbation δψj(ω) between the actual and a reference model can be ex-

pressed as,

δψj(ω) =

∫ ∆

0
kj(s, ω)ds− k0

j (ω)∆

=

∫ ∆

0
δkj(s, ω)ds, (5.4)

where k0
j is the wavenumber for a reference model. Introducing a path-average perturba-

tion of the wavenumber,

δψj(ω) = 〈δkj(ω)〉∆. (5.5)

With a restriction to just the variations in shear wavespeed δβ from the reference model

β0(z) along the path, the average wavenumber perturbation along a path with the first

order approximation is expressed as,

〈δkj(ω)〉 =

∫ R

0

∂kj(ω)

∂β(z)
〈δβ(z)〉dz, (5.6)

where R is the radius of the Earth and 〈δβ〉 is the average perturbation of shear wavespeed

along the path which can be represented as,

〈δβ(z)〉 =
1

∆

∫ ∆

0

(

βtrue(s, z) − β0(z)
)

ds =
1

∆

∫ ∆

0
δβ(s, z)ds. (5.7)

A schematic flow chart of the conventional two-stage inversion scheme based on the

exploitation of path-average models is shown in Fig 5.1. In most two-stage methods for 3-

D shear wavespeed structure, the stratified model with the path averaged structure derived

from waveform fitting in the first stage represents the average of the shear wavespeed (e.g.,
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Fig. 5.1. A schematic flow chart of the two-stage inversion for a 3-D shear wavespeed structure using

surface waves.

Nolet, 1990) or shear slowness (e.g., Debayle & Kennett, 2000a) structure along the great-

circle path from source to receiver, which is shown as a shaded surface in the bottom panel

in Fig 5.1.
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5.2.1 Limitations for path-averaged models

The first order perturbation theory for a stratified shear wavespeed model has been the

basis of the traditional two-stage approach. This is a reasonable approximation if the

variations in seismic structure along the path are sufficiently small and first-order pertur-

bation theory can be applied. However, recent regional tomography models (Simons et

al., 1999; Debayle & Kennett, 2000a) indicate that there may be contrasts in crustal and

mantle structures, e.g., at the edge of a shield and ocean-continent boundaries, which are

strong enough to break down the linearised analysis.

For such models with large velocity variations, we will need to invoke the argument

on possible effects from neglecting the higher-order terms in the perturbation theory.

Kennett & Yoshizawa (2002) investigated the effects of the second-order term in the shear

wavespeed perturbation, and showed that it will become important if there are significant

portions of the path with more than about 4% deviation from the path-averaged structure.

If the variations in the true seismic structure along the path are small, it is reasonable

to assume that a path-averaged model can be retrieved from a waveform inversion with a

stratified model. However, we should note that this is quite a strong requirement; it is not

just the variation associated with the path-average model that is required to be small, but

also the true deviations from the model. Even in circumstances where the path-average

model assumption is inadequate, we can still employ the representation of the seismogram

in terms of the integrated phase contributions from each of the modes (5.1), although the

paths for the individual modes may be different as seen in Fig 4.12.

In order to investigate the validity of path-average assumption, numerical simulation of

surface wave propagation in 3-D models using direct numerical methods or via mode and

wavenumber coupling (Kennett, 1998a) will be helpful. However, the numerical implemen-

tations for the relatively long paths with respect to wavelengths for simulating regional

tomography are still prohibitive. Thus, testing of waveform inversion procedures has been

confined to stratified models.

Hiyoshi (2001) studied extensively with synthetic tests for stratified media based on

several waveform inversion schemes, and showed that a direct linearised inversion proce-

dure (Nolet et al., 1986) will provide good recovery of the true model for perturbations in

velocity of the order of ±2%. This implies that the choice of starting model β0(z) is critical

to the success of this type of waveform inversion. By employing secondary variables, as

in the approach of Cara & Lévêque (1987), larger velocity perturbations up to ±8% from

the reference model can be retrieved with inversion for stratified models using Rayleigh

waves. Nevertheless, the limitations on the interpretation of the recovered model remain.

Only models from the waveform inversion with small variation from the reference model
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can be regarded as an average of the shear wavespeed structure along the path. For Love

waves, the domain of quasi-linearity is rather limited (±4%), which may be attributed

mainly to the significant overlap of the fundamental and higher mode contributions.

The path-average approximation will break down in the presence of rapid changes in

seismic parameters compared to the wavelengths of the surface waves. Such strong het-

erogeneity is likely to produce significant deviations of the surface wave path from the

great circle between source and receiver, with induced coupling between modes. As the

frequency of the surface waves is increased, the influence of wavespeed gradients become

more important. Gradients perpendicular to the propagation path lead to deviations of

the propagation path from the great circle as discussed in section 2.7 and gradients along

the path tend to cause coupling between modes. These effects limit the frequency ranges

over which path average approximations can be applied. The fundamental modes are

strongly influenced by shallow structure and suffer from substantial path deviations at

higher frequencies. Mode-coupling is more important for the higher modes which sum

to represent body-wave contributions (Marquering et al., 1996). The influence of mode

coupling can be restricted by choosing a suitable frequency range (Kennett, 1995).

5.2.2 An alternative approach

Instead of simply relying on perturbation theory, we can seek a 1-D model β′(z) which

gives wavenumbers k′j for a set of modes,

ψj(ω) = k′j(ω)∆, (5.8)

over the frequency range of interest. We can then use β′(z) as a representation of the multi-

mode dispersion. This idea arises from the fully non-linear inversion procedure for the

waveforms of surface waves developed in chapter 3, based on the use of the Neighbourhood

Algorithm procedure of Sambridge (1999) for the exploration of parameter space.

The constraints introduced in waveform inversions for a wavespeed structure are helpful

for providing quite stable results of inversion for a particular type of parameterisation for

the wavespeed profile. However, different styles of parameterisation produce models with

comparable fit to data but different character. Nevertheless, the dispersion characteristics

of the different successful models match very well.

If we treat such models recovered from waveform inversion as a summary of multi-mode

dispersion, we can work with somewhat less restrictive conditions than working with a

path-averaged shear wavespeed model. We still require the Earth to be smoothly varying so

that we may employ the path-average approximation for phase, but significant deviations

from the reference model can be accommodated. This viewpoint leads naturally to a three-



5.3 Three-stage inversion scheme 98

stage inversion procedure to recover 3-D seismic structure, through the intermediary of

multi-mode dispersion maps as a function of frequency. It is still necessary to work with

a limited frequency band so that a simple representation can be used for the propagation

terms, avoiding too high frequency (higher than 30 mHz) where mode coupling becomes

important.

5.3 Three-stage inversion scheme

We propose a three-stage approach to the construction of 3-D shear wavespeed models

from surface wave observations based on the development of multi-mode dispersion maps

as a function of frequency (Fig 5.2). This new style of surface wave tomography has the

advantage of being able to incorporate information from a wide range of sources in a

common framework.

5.3.1 The first stage: Multi-mode dispersion measurements

The first step in the construction of the model is to gather path-specific dispersion infor-

mation for a number of modes crossing the region of interest. We will require a dense and

uniform path coverage to be able to achieve good lateral resolution in dispersion maps at

the second step.

Any method to estimate phase dispersion may be used so that the possible maximum

ray coverage can be exploited. For long paths to global stations, it may be appropriate to

estimate dispersion directly, as used in most global studies (e.g., Trampert & Woodhouse,

1995; Ekström et al., 1997). Such measurements can be extended to higher modes as in the

mode stripping technique of van Heijst & Woodhouse (1997), which requires reasonable

temporal separation between modal contributions.

Although it would be desirable to use direct extraction of phase speed for different

modes, at regional distances, the differences in group velocity for different modes are not

sufficient to be able to isolate the contribution of each mode except for the fundamental

mode. For Love wave, it is even difficult to separate out the fundamental mode (see Fig

3.8). We therefore need to employ indirect measurements of the phase properties. For

regional ranges, we can use waveform inversion for the surface waves as a means of extract-

ing summary 1-D velocity profiles for each path. Irrespective of the particular inversion

scheme which has been used for the construction of the path-specific shear wavespeed

profile, we can utilise the 1-D model as a representation of the phase dispersion of the

surface waves along the path as we have investigated in chapter 3.

Since the 1-D models are just used as a summary of multi-mode dispersion behaviour
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Fig. 5.2. A schematic flow chart of the three-stage inversion for a 3-D shear wavespeed model.
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along the path, we are able to use isotropic models to treat the dispersion of Love and

Rayleigh waves independently. The simplification of model descriptions has a number of

significant advantages in increasing the flexibility of the tomographic process.

Previous studies on polarization anisotropy based on the analysis for Love and Rayleigh

waves have employed the simultaneous inversion of the waveforms on the vertical and

transverse components via a transversely isotropic model with a vertical symmetry axis

(e.g., Lévêque et al, 1998; Debayle & Kennett, 2000b). The requirement for good record-

ings on both components is very restrictive, since we have to avoid the nodal directions

of radiation pattern for both Love and Rayleigh waves. By working with just the phase

dispersion information for Love and Rayleigh waves represented by independent stratified

models that are equivalent to distinct SH and SV wavespeed structures, the condition for

simultaneously good recordings for both wave types is not required. We are thus able to

exploit all paths for which good recordings are available for either type of waves, which

increase the available path coverage.

Another class of useful additional information to the dispersion is the polarization in-

formation, which is measured as arrival-angle anomalies of surface waves in the horizontal

components. Such information from polarization anomalies can be helpful for both studies

of lateral heterogeneity and anisotropy (Laske & Masters, 1996,1998; Larson et al., 1998;

Yoshizawa et al., 1999). At regional distances, both Love and Rayleigh waves tend to

arrive nearly at the same time, which makes the polarization analysis of surface waves

difficult. For longer paths (≥ 50◦), the separation of the different components and modes

is clearer and thus we can extract polarization information for the fundamental mode from

three-component seismograms.

5.3.2 The second stage: Inversion for multi-mode phase speed maps

The second step of the three-stage inversion is to construct phase dispersion maps as a

function of frequency for the different modes using the dispersion information assembled

for a number of paths. In this process, the path-average property of the phase along each

path is exploited. The advantage of working with phase speeds is that we can readily

incorporate off-great-circle propagation and the finite-frequency effects depending on the

mode and frequency in the construction of phase speed maps. The dispersion maps can be

iteratively updated incorporating with ray tracing taking account of the effects of surface

wave propagation.

A first approximation can be carried out as a linear inversion based on the traditional

assumption that the surface wave paths follow the great-circle. Each of the dispersion

curves for a path can be regarded as a set of linear averaged constraints on the phase speed
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Fig. 5.3. Illustrations of ray-tracing for Rayleigh waves through the phase speed distribution derived from

the shear wavespeed model of Debayle & Kennett (2000a) for the Australian region. A uniform spray of

rays is initiated from a source in New Guinea for both the fundamental and first higher mode at 40 s

period and tracked across the phase speed maps for the two modes. At the left the sensitivity of the mode

contributions to velocity structure with depth are indicated through the partial derivatives with respect

to shear wavespeed. To the right the keys indicate the level of phase speed perturbation from reference

speeds of 3.93 km/s for the fundamental mode and 4.87 km/s for the first higher mode.

distribution as a function of frequency. We can employ any types of parameterisation of

space such as cells or a continuous representation as in the work of Montagner (1986).

This initial inversion is then followed by iterative updates. We can trace surface wave

rays directly in the phase speed structure, so that the effects of the deviations of ray paths



5.3 Three-stage inversion scheme 102

from the great-circle can be included in the improvement of the phase speed maps at each

frequency.

Strong gradients in phase speed can produce significant deviations of ray paths partic-

ularly at higher frequencies. In Fig 5.3, we show the patterns of propagation of Rayleigh

waves from a source in New Guinea through phase speed distributions for 40 s waves de-

rived from the 3-D shear wavespeed model of Debayle & Kennett (2000a). We show rays

radiated with a uniform distribution from the source in phase speed maps for both the

fundamental and first higher modes. The strong gradient in phase speed associated with

the edge of the Australian shield near 140◦E has the effect of introducing defocussing of

the rays travelling close to north-south, and the gradients to the east also affect the rays

significantly. The effects are more severe for the fundamental mode where the sensitiv-

ity is greatest for structure in the uppermost part of the mantle. There is a prominent

bunching of rays near the ocean-continent boundaries in northwestern Australia. Even for

the first-higher mode, which samples the top 300 km of the mantle, there are noticeable

deviations from the great-circle around the edge of the shield and in the Tasman Sea to

the east. Two-point ray tracing shows that the deviations from the geodesic path rarely

exceed 300 km. However, the focussing and defocussing effects seen in Fig 5.3 should

cause some effects on amplitude of observed surface waves, which may result in failure of

waveform fitting.

In the phase speed structure, not only ray deviation but also the influence zone surround-

ing a surface wavepath can be treated. The influence zone for surface waves described in

chapter 4 is defined as approximately one-third of the first Fresnel zone, and arises from

the finite frequency of the surface waves. This influence zone has a typical half-width,

transverse to the path, of about 100 km for the fundamental mode at 40 s period, and

increases to around 200 km at 100 s period (Fig 4.11). Introducing the influence zone in

a tomographic inversion will naturally smooth out the short-wavelength features from the

phase speed maps and corresponds to the effect of the wavefront healing by diffraction

processes.

If we can achieve a dense path coverage with a number of crossing paths, we can also

constrain the angular variations in phase speed associated with azimuthal anisotropy.

Once we have an anisotropic model, anisotropic ray tracing (e.g., Tanimoto, 1987; Larson

et al., 1998) should be used to update the dispersion maps.

The use of phase-speed maps at a number of frequencies thus provides a way in which

a variety of information can be brought together for mutual benefit. We can use long-

wavelength phase speed maps derived from global studies as an initial reference model

on which the more detailed information from regional paths can be superimposed. This
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also has the merit of including information from very long-period waves that are not well

recorded by portable broad-band instruments that are widely used in regional studies.

There is a close relation between the phase speed variations and the associated 3-D

variations in wavespeed as illustrated in Fig 5.4. The phase speed maps reflect the shear

wavespeed information through a set of sensitivity kernels derived from the modal eigen-

functions. In Fig 5.4, we displayed tomography maps at depths of 100 km and 200 km of

the 3-D model of Debayle & Kennett (2000a) compared with the phase speed distribution

for the fundamental mode at frequencies chosen to have the maximum sensitivity at the

same depths. These relations can be exploited in the final stage of the three-stage process

for a 3-D structure.

5.3.3 The third stage: Inversion for shear wavespeed structure

The final step of the three-stage inversion scheme is to invert local dispersion information

for a 1-D shear wavespeed profile. We first need to assemble the full set of multi-mode

phase dispersion maps as a function of frequency, and then use some form of cellular

inversion to extract a 3-D model. Within each cell or at each grid, we combine the local

information for each mode to construct a set of dispersion curves as a function of frequency

including azimuthal effects whenever available, and then perform an inversion for a local

stratified 1-D wavespeed profile including anisotropy.

The smoothing applied in the construction of the phase-speed maps, both to stabilise

the inversion and also through the inclusion of the influence zone at finite frequency, will

provide a high degree of correlation between the dispersion properties in nearby cells, and

hence in the final shear wavespeed profiles.

We have described the three-stage inversion scheme with the use of the phase dispersion

of surface waves, particularly through the influence on seismic waveforms. However, group

speed information can also be incorporated in this approach (e.g., Ritzwoller & Levshin,

1998) to better constrain the final 3-D shear wavespeed model. Thus, we can envisage the

third stage in the tomographic inversion by undertaking a simultaneous inversion of phase

and group speed information for the localised cells (Villaseñor et al., 2001).

At this stage, care must be taken concerning the local sensitivity of short period phase

and group speeds to crustal structure. This can be tackled by working with an appropriate

3-D crustal model that represents the shallow structures in the region of interest.
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5.4 Discussion

Although the 3-stage tomographic inversion procedure is less direct than conventional 2-

stage methods such as partitioned waveform inversion, it provides a convenient means of

studying regions with large velocity variations in structure. By using the phase speed

maps as a function of frequency, we can treat the finite frequency effects of surface wave

propagation as well as the influence of strong heterogeneity via ray-path deviation in an

iterative linearised inversion. It is also possible to include measurements of the arrival

angle (or polarization) anomalies of fundamental-mode surface waves for comparatively

longer paths (longer than 50◦).

The three-stage inversion allows us to construct the structure utilising information from

global studies as well as the information of regional phase dispersion obtained by any

convenient means: such as direct measurements or estimates of dispersion derived from 1-D

models obtained by waveform inversion. Since the surface wave dispersion does not depend

on the particular parametrisation used in the waveform inversion, 1-D models derived

from different styles of waveform matching can be combined through their dispersion

characteristics.

It is also possible to use different isotropic models for waveform inversion of Love and

Rayleigh wave dispersion. This enables us to explore the maximum coverage of Love and

Rayleigh wave paths and offers the possibilities of better resolution of anisotropic models.

The information from not only the phase dispersion, but also the group dispersion can

also be incorporated in the framework of the three-stage approach.

It should be noted that the non-uniqueness in the 1-D models discussed in chapter 3 and

section 5.2.2 cannot be eliminated in linearised inversions for 1-D models in the third stage,

even though such non-uniqueness can be somewhat suppressed through an appropriate

choice of a priori information introduced in inversion processes. In this regard, both the

two-stage and three-stage scheme may have similar ambiguity in the models, but the three-

stage inversion scheme still has advantages over the conventional two-stage approach. That

is, various types of information, such as multi-mode dispersion, off-great-circle propagation

and finite-frequency effects can be treated efficiently in a common framework, which makes

it possible to make more sophisticated treatment when we construct phase speed maps.

Furthermore, we can use any convenient technique in the first stage to make reliable

measurements of multi-mode phase speeds, and thus different data sets can be combined

in tomography models. This scheme is applied to the Australian region in the next chapter.
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Application of the three-stage inversion to the Australian

region

6.1 Introduction

The three-stage inversion scheme introduced in chapter 5 is applied to the Australian re-

gion. This approach gives us a number of benefits in that we can treat various sources of in-

formation, such as multi-mode dispersion, off-great-circle propagation and finite-frequency

effects in a common framework. Therefore, there are significant advantages over conven-

tional two-stage inversion techniques.

The three-stage inversion is a flexible method and any convenient inversion technique can

be adopted at each stage. We first estimate multi-mode phase speeds using path-specific

1-D profiles for the Australian paths of Debayle & Kennett (2002), which are derived by

fitting the cross-correlograms as secondary observables. The ensemble of the dispersion

information is then inverted for multi-mode phase speed maps as a function of frequency

using the LSQR algorithm of Paige & Saunders (1982). These phase speed maps are

iteratively updated incorporating ray tracing in phase speed maps and the influence zone

around surface wave paths. Thus, we obtain several sets of models with different types of

inversion (i.e., with or without the effects of the off-great-circle propagation and the finite-

frequency) at this stage. Finally, local multi-mode dispersion curves are assembled from

the phase speed maps in particular cells, and then, are inverted for local shear wavespeed

profiles, which form the final 3-D shear wavespeed model.

Since we obtain several sets of models in the second stage with or without the consider-

ation of various effects of surface wave propagation, several types of 3-D shear wavespeed

models with different processes of inversion can be retrieved. In this chapter, we will show

five sets of tomography models. With these different types of models, we can investi-

gate the effects of finite-frequency as well as off-great-circle propagation on the final 3-D

models.

106
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The major objective of this chapter is to present practical formulations for the three

independent stages, and to apply them to extract a new Australian upper mantle model to

assure the utility of the three-stage approach. Thus, in our first attempt of applying the

three-stage approach to surface wave tomography, we simply use a set of Rayleigh-wave

phase speeds for the fundamental and the first three modes at particular frequency ranges

to obtain an isotropic shear wavespeed model. No effect of anisotropy is considered in the

present work. This topic is left to future studies on the improvement of the three-stage

method.

6.2 Data set

The first step of the three-stage inversion is to measure multi-mode dispersion from obser-

vations. At this stage, we can employ any convenient method for estimating surface wave

dispersion. In this study, we use 2000 path-specific 1-D shear wavespeed profiles of Debayle

& Kennett (2002), which have been derived from waveform inversion for frequency range

between 50 and 160 seconds using secondary observables based on the cross-correlograms

calculated from observed and synthetic seismograms (Cara & Lévêque, 1987).

The waveform inversion technique for these 1-D models is the same as that used in

an earlier study (Debayle & Kennett, 2000a) for the Australian region, although, in that

work, the waveform fitting was performed including slightly shorter periods (down to 40 s

of the centre frequency of band-pass filter). Such shorter period surface waves can be con-

taminated by scattered waves in the crust and the uppermost mantle where strong lateral

heterogeneity is expected to exist. Also, in the earlier study, paths from the Philippine

Sea region have been included in the data sets. The new data set of Debayle & Kennett

(2002) has employed only the paths within the Australian Plate to avoid possible complex

effects from major structural boundaries in the north. Therefore, this data set is more

desirable to investigate the upper mantle structure beneath the Australian continent.

These 1-D models are derived from a vertical component of Rayleigh waves recorded at

the IRIS and GEOSCOPE stations as well as at portable broadband seismic stations of the

SKIPPY and KIMBA experiments undertaken by the seismology group at the Australian

National University from 1993 to 1998 (Fig 6.1 a). We have corrected the crustal structure

using 3SMAC (Nataf & Ricard, 1996) to improve the calculation of shorter period phase

speeds. Then we have estimated phase speeds for up to third higher modes for the period

ranges shown in Table 6.1 using these path-specific 1-D profiles. With the appropriate

corrections for the crustal structure, we can estimate the multi-mode phase speeds to

slightly shorter periods of 40 s. The longest period of Rayleigh waves for phase speed
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Fig. 6.1. (a) The distribution of the global permanent stations (red triangles), portable stations (green

diamonds) and events (violet circles), and (b) 2000 Rayleigh wave paths of Debayle & Kennett (2002).

measurements depends on the modes of interest as given in Table 6.1. The phase speed

models are obtained between these period ranges with an increment of 10 s period.

Some examples of 1-D models and estimated phase dispersion curves of the fundamental
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mode branch 0 1 2 3

min. period (s) 40 40 40 40

max. period (s) 150 140 100 60

Table 6.1. The minimum and maximum period range for which the Rayleigh-wave phase

speeds are estimated from the 1-D shear wavespeed profiles.
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Fig. 6.2. Examples of the path-average 1-D profiles of Debayle & Kennett (2002) and multi-mode phase

dispersion curves estimated from these 1-D models. The three paths are chosen so that they sample mainly

(a) oceanic region, (b) continental region and (c) both oceanic and continental region.

and the first three modes for different paths to the NWAO station in the south-west

Australia are shown in Fig 6.2. These 1-D models are smoothed at 400 and 670 km

boundaries. A path passing through the Indian Ocean (Fig 6.2 a), shows clear slower

shear wavespeed anomaly around the 150 km depth, whereas a continental path (Fig 6.2

b) shows the noticeable higher wavespeed anomalies in the top 200 km, passing mainly

in the Proterozoic and Archaean blocks in the central and western Australia (Fig 6.3).

Another example in Fig 6.2 (c) shows a path traveling both the oceanic and continental

region. The corresponding path-average 1-D model shows the average features of the

oceanic and continental structures and there is no remarkable anomalies in the upper

mantle.
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Fig. 6.3. Major geological blocks at the surface of the Australian region.

The use of the sets of 1-D models of Debayle & Kennett (2002) is helpful to assess

the final model from the three-stage approach compared with a model obtained from a

different technique, i.e., two-stage approach. The inversion procedure adopted in Debayle

& Kennett (2000a, b and 2002) is based on the two-stage approach working with path-

average 1-D models which are used to constrain the final 3-D model. In this study, we will

also obtain a 3-D shear wavespeed model with two-stage procedure using such 1-D models

directly.

In practice, the available number of higher modes, which can be reliably extracted

from the observation, depends strongly on the excitation of the modes at the source.

Some of these 1-D models are primary constrained by the fundamental mode for shallow

events. For testing the development of the method, we have used the 1-D models to

generate higher mode dispersion, even where the model is almost entirely constrained by

the fundamental mode. Thus for very shallow sources, the higher-mode dispersion will

not represent independent information.

The reliability of the measured phase speeds from such 1-D models can be taken into

account by using a posteriori errors in the 1-D shear wavespeed profiles, which represent

how well the model is constrained via waveform fitting; i.e., for 1-D models that have been

constrained only by the fundamental mode, the estimated errors in shear wavespeed be-

come large at depth where there is little sensitivity. We use this information for measuring
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the errors in the estimated phase speeds, which are subsequently used as weighting on the

phase speed data in inversions for phase speed maps at the second stage.

6.3 Inversion for multi-mode phase speed maps

In this section, we first explicitly formulate the phase speed inversion for the second-

stage. Any method for linearised inversions can be used as long as they are able to give

reliable and stable solutions for intermediate size of tomographic system. In this study,

we have employed the LSQR algorithm (Paige & Sanders, 1982) to invert the sets of

path-specific dispersion data for multi-mode dispersion maps as a function of frequency.

The formulation of the inversion and model resolution, as well as the trade-off between

the misfit and model norm are explained in detail. Some examples of phase speed maps

derived from different types of inversion kernels are also displayed.

6.3.1 Formulation of inversion

In the second step of the three-stage inversion, the ensembles of the path-average phase

speeds for each mode are inverted for mode-dependent phase speed maps as a function

of frequency. The linear relationship between perturbation of phase of seismograms, δψ,

and phase speeds for a jth mode, δcj , can be represented as (e.g., Woodhouse and Wong,

1986),

δψj(ω) ≃ −kj(ω)

∫

rayj

ds
δcj(s, ω)

cj0(ω)
, (6.1)

where kj is the wavenumber (= ω/cj0) for a reference model. Hereafter we omit the

dependency on a frequency ω and mode number j. The phase of observed seismogram is

thus represented by the average phase speed perturbation along the great-circle with an

epicentral distance ∆,

δψobs ≃ −k
〈

δc

c0

〉obs

∆, (6.2)

where
〈

δc

c0

〉obs

=
〈c〉obs − c0

c0
, (6.3)

and 〈c〉obs is a average phase speed along the great-circle. In the process of waveform

inversion, synthetic seismograms are generally calculated for propagation along the great

circle between the source and receiver, and thus the estimated phase speeds are also

regarded as being measured as an average along the great-circle rather than along the

actual ray path. When we update phase speed maps working with ray tracing, we need to
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ray

phase: ψ    = constantobs

great-circle: ∆<c>ray

<c>obs

Fig. 6.4. Illustration of the great-circle with epicentral distance ∆ and the actual ray path. Since the phase

of an observed seismogram is constant, the average phase speed 〈c〉obs measured along the great-circle and

〈c〉ray along the ray have slight differences associated with the differences in the travel distances.

correct the observed phase speeds along the great-circle so that they are to be measured

along the ray path, as discussed in the next section.

6.3.1.1 Linear relation

The path-average phase speeds can be given as the following linear relationship derived

from (6.1) and (6.2),

〈

δc

c0

〉obs

=
1

∆

∫

g.c.
ds
δc(s)

c0
, (6.4)

where the integration is taken along the great-circle between the source and receiver. Using

the relationship (6.4), frequency and mode dependent phase speed maps are obtained based

on the assumption of surface wave propagation along the great-circle.

In the framework of the three-stage inversion introduced in the previous chapter, we

can update such phase speed maps by working with ray tracing for all the paths. Since

the actual ray paths should be longer than the epicentral distance ∆ along the great-circle

path, and the phase contribution in a seismogram does not depend on the ray path (Fig

6.4), the average phase speeds 〈c〉obs along the great-circle can be corrected as follows.

The observed phase ψ(ω) can be simply regarded as an integral of phase slowness along

an arbitrary path,

ψ(ω) =
ω

〈c〉obs∆ = ω

∫

ray

1

c(s)
ds =

ω

〈c〉ray∆ray. (6.5)
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Fig. 6.5. Schematic illustration of the influence zone in a ray-centered coordinate system (s, n).

Thus the average phase speed 〈c〉ray along the actual ray path with a distance, ∆ray =
∫

ray ds, can be represented as,

〈c〉ray = 〈c〉obs∆ray

∆
(6.6)

Using (6.6), the linear relation for the average phase speed along the ray can be written

as,
〈

δc

c0

〉

ray
=

〈c〉ray − c0
c0

=
1

∆ray

∫

ray
ds
δc(s)

c0
. (6.7)

Phase speed maps can be improved not only via ray tracing, but also by including the

influence zone of surface wave paths explained in chapter 4. Since the influence zone has

been defined as the finite area over which surface waves are coherent in phase, we can

regard the observed phase speeds as an average within the influence zone rather than just

as an average along the path.

Using the ray centered coordinate system (s, n) introduced in chapter 4, we first consider

the average phase speed variation perpendicular to the ray at a particular point s on the

path,
〈

δc(s)

c0

〉

=
1

2N (s)

∫

width
dn
δc(s, n)

c0
, (6.8)

where N (s) =
∫ N (s)
0 dn is a half-width of the influence zone at a point s on the ray path

(Fig 6.5). (6.8) can then be integrated along the path to give an average phase speed

variations within the influence zone,
〈

δc

c0

〉

=
1

∆

∫

path
ds

〈

δc(s)

c0

〉

=
1

∆

∫

path
ds

1

2N (s)

∫

width
dn
δc(s, n)

c0
. (6.9)
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The integration term along a path can be calculated along either the great-circle path or

the actual ray path. If we take into account the influence zone around the source and

receiver locations as discussed in the Appendix B, the integration along the path should

be undertaken between the two edges of the influence zone on the ray trajectory (Fig 6.5),

so that the total zone should be slightly longer (∼ λ/2) than the ray path length. Since

the influence zone is defined so that the surface waves within a zone is coherent in phase,

we can regard the measured phase speed variation along a path as the average within the

influence zone.

It should be noted that we do not simply take an area-average within the influence

zone in (6.9). The simplest representation of the area-average can be given by dividing

the integration of phase speeds within the influence zone by the total area of the zone

A(=
∫

path ds
∫

width dn). But, in (6.9), we first consider the integral perpendicular to the ray,

then, the average phase speeds over the width of the influence zone are further integrated

along the path. This process of double integration allows us to provide a two-dimensional

distribution of the sensitivity to the phase speed structure, which varies along the path

but is constant over the width of the influence zone as visualised in Fig 6.6. From (6.2)

and (6.9), we can obtain a form of sensitivity kernels of surface wave phase as,

δψ = − ω

c0

∫

path
ds

1

2N (s)

∫

width
dn
δc(s, n)

c0

= −
∫

path
ds

∫

width
dn Kψ(s, n)

δc(s, n)

c0
, (6.10)

where the sensitivity kernel Kψ is given by,

Kψ(s, n) =











ω

2N (s)c
: |n| ≤ N (s)

0 : |n| > N (s)

(6.11)

At the extended locations over the source and receiver derived from the edge corrections

in Appendix B, the half-width N (s) is fixed to be λ/2 in the practical calculation of the

kernel (6.11) so that we can avoid a very large a sensitivity caused by too small half-width

of the influence zone.

As seen in Fig 6.6, it is apparent that the surface wave sensitivities to the phase speed

structure varies along the path, whereas they are constant over the width of the influence

zone. The highest sensitivity is concentrated near the source and receiver, as expected

from the sensitivity kernels evaluated with first-order scattering theory (e.g., Yomogida,

1992; Marquering et al., 1998, 1999; Dahlen et al., 2000; see also chapter 7).

Although the sensitivity kernels Kψ do not vary across the central ray path within the

influence zone, the assumption of the coherent phases within the zone tends to be violated

near the edge of the influence zone as discussed in section 4.4.3. The errors, caused by the
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Fig. 6.6. Representation of the sensitivity kernel Kψ for a path between an event in Fiji and the CAN

station in south-eastern Australia. Influence zone of the fundamental-mode Rayleigh waves at 50 (a and

c) and 100 (b and d) seconds are displayed. In (c) and (d), a cosine-taper weight function W(s, n) is

multiplied to the Kψ. PREM model is used as the reference model used to calculate all the kernels. The

yellow line is the great-circle.
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slight incoherency in phase, can be somewhat reduced by introducing a weight function

across the influence zone. Considering the very small variations in the phase contributions

within the influence zone, we adopt a cosine taper, rather than a Gaussian, as the weight

function. The equation (6.9) is then represented as,
〈

δc

c0

〉

=
1

∆

∫

path
ds

1

2N (s)

∫

width
dnW(s, n)

δc(s, n)

c0
, (6.12)

where

W(s, n) = cos

[

π

2

(

n

N (s)

)2
]

. (6.13)

In the actual inversion for the phase speed maps, we use the formulation (6.12) with a

weight function.

To take account of the full effects of scattering outside the influence zone, we may envis-

age the use of the Born approximation with more rigorous calculations of the sensitivity

kernels. Tackling these more complicated problems is beyond the scope of this study, but

such rigorous sensitivity kernels will be discussed in chapter 7.

6.3.1.2 Least-squares inversion

The linearised equations (6.4), (6.7) and (6.12) can be written in a generalised form,

d = Gm, (6.14)

where the data vector d consists of the observed phase speed variations 〈δc/c〉i(i =

1, 2, ...,M) and M is the total number of paths. m is a model vector that include the

model parameters mj(j = 1, 2, ..., N) and G is the kernel matrix.

In this study, we use a spherical B-spline function F(θ, φ) (e.g., Lancaster & Salkauskas,

1986) defined at the centre of a geographic cell as a basis function to expand the phase

speed perturbation as follows,

δc(θ, φ)

c0
=

N
∑

j=1

mjFj(θ, φ), (6.15)

where mj is the coefficients of the jth basis function Fj , which are the model parame-

ters to be obtained, and N is the total number of the model parameters. The spatial

parameterisation using such basis function is explained in detail in Appendix C.

Using the spherical B-splines, the components of the kernel matrix G can be written

as,

Gij =



















1

∆i

∫ ∆i

0
dsFj : average along the path,

1

∆i

∫ ∆i

0
ds

1

2N (s)

∫

width
dnW(s, n)Fj : average within the influence zone,

(6.16)
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for the ith path and the jth model parameter, where the epicentral distance ∆i is measured

along either the great-circle or the ray path.

We can solve the linearised equation (6.14) with the damped least-squares inversion

scheme, minimising the following objective function,

Φ(m) = (d − Gm)TWd(d − Gm) + λ2mTm, (6.17)

where Wd is a weighting matrix that controls the relative contribution of individual data

misfit, and λ is an arbitrary damping parameter that controls the trade-off between the

model variance and resolution, which subsequently affects the maximum amplitude and

smoothness of the model.

In this study, we use a data covariance matrix Cd to represent the weighting on the data

misfit, so that Wd = C−1
d . Assuming that measured phase speeds for different paths are

uncorrelated (although there may be some correlation through the source location) and

their variances are different for each path, the covariance matrix can be represented as,

Cd = σ2
diI, (6.18)

where σdi is the measurement errors for the ith datum and I is the identity matrix. Then,

the first term in the right-hand side of (6.17) can be represented explicitly as,

∑

i

1

σ2
di

∣

∣

∣

∣

∣

∣

di −
∑

j

Gijmj

∣

∣

∣

∣

∣

∣

2

=
∑

i

∣

∣

∣

∣

∣

∣

1

σdi
di −

∑

j

1

σdi
Gijmj

∣

∣

∣

∣

∣

∣

2

=
∑

i

|d′

i −
∑

j

G
′

ijmj|2, (6.19)

where

d
′

i =
1

σdi
di, G

′

ij =
1

σ di
Gij . (6.20)

Introducing new data vector d
′

and kernel matrix G
′

which are scaled with measurement

errors for each datum as shown in (6.20), we can rewrite (6.17) as follows,

Φ(m) = |d′ − G
′

m|2 + λ2|m|2. (6.21)

Thus our inverse problem is to solve the following system of equation,




G
′

λI



m =





d
′

0



 . (6.22)

We use the LSQR algorithm (Paige & Saunders, 1982) to solve a set of linear equations

(6.22).

6.3.2 Five sets of phase speed models

In this study, we obtain multi-mode phase speed models using different types of inversion

kernels (6.16) working with the great-circle approximation, ray tracing or the influence
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finite-frequency 

great-circle ray

GC0 : models with the great-circle approximation
: models with the influence zone around the great-circle pathGCiz

Ray-GC0 : models updated from GC0 with ray tracing only
: models updated from GC0 with ray tracing and 
  the influence zone

Riz-GC0

Riz-GCiz : models updated from GCiz with ray tracing and 
  the influence zone

Initial models

Updated models

Fig. 6.7. A chart representing relations amongst five sets of models. Model sets GC0 and GCiz are

derived from the great-circle approximation, and these models are used as initial heterogeneous models in

the subsequent inversions for updating models (Ray-GC0, Riz-GC0 and Riz-GCiz).

zone. In order to distinguish the different sets of phase speed models derived from different

techniques, they are named according to their inversion method. The naming convention

and the relation of these model-sets are summarised in a model chart (Fig 6.7).

We first obtain the set of models GC0 using the great-circle approximation without any

consideration of the zone of influence. Therefore, the model set of GC0 is based on a

similar procedure to the conventional inversion technique for phase speed maps.

The influence zone can be incorporated with the great-circle approximation. We gen-

erate a set of models GCiz using the influence zone around the great-circle paths. Since

we assume that each path is along the corresponding great-circle, we simply require a ho-

mogeneous reference model. We use the Preliminary Reference Earth Model (Dziewonski

& Anderson, 1981) as a reference model to represent all the tomography models shown in

this chapter.

The phase speed models GC0 can be updated by incorporating surface-wave ray tracing

in the phase speed maps, which produce a new set of models Ray-GC0. In the sense of
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geometrical ray theory, these models updated with ray tracing can be considered to be a

better set of models than GC0.

We also use GC0 to obtain an alternative new model set Riz-GC0 considering both the

off-great-circle propagation and the influence zone for each path.

The other set of the heterogeneous models GCiz derived from considering the influence

zone around the great-circle, are further updated working with ray tracing as well as with

the influence zone to produce the final model set Riz-GCiz, which can be regarded as

potentially the best model in this study in that we take full account of the possible effects

of off-great-circle propagation and finite-frequency effects.

We term these update processes for the sets of models as global iteration to distinguish

them from the other iteration processes for each phase speed inversion with the LSQR

algorithm (local iteration).

Although the new sets of phase speed models (i.e., Ray-GC0, Riz-GC0 and Riz-GCiz )

can be further updated by iteration, there is no need to repeat this process more than once

because, in most cases, the second global iteration do not alter (or improve) the models

significantly. As shown in the later sections, the models Riz-GC0 and Riz-GCiz, which

are updated from a different initial models by considering both the off-great-circle paths

and finite-frequency effects, are extremely similar suggesting that one global iteration is

sufficient to provide a satisfactory convergence of phase speed models including the effects

of finite frequency.

Still, we should note that each phase speed model is obtained through more than 20

local iterations using the LSQR algorithm as explained in the next section.

6.3.3 Model assessment: trade off and resolution of models

In this section we discuss the behaviour of the tradeoffs between data misfit and model

norm, and a way to assess the spatial resolution of the models.

Fig 6.8 (a) shows the behaviours of the misfit and model norms as a function of local

iterations of the LSQR algorithm, with varying damping parameters (λ = 0.4, 1.0 and

1.6) for a phase speed model GC0 at 100 s. The number of local iteration that give a

sufficient convergence depends on the choice of damping parameter. For a relatively large

damping of λ = 1.6, both the model and misfit norms converge by the 10th iteration with

a suppressed model norm and slightly higher misfit. With a smaller damping of λ = 0.4,

the model norm grows rapidly and models do not converge within 10 iterations.

With λ = 1.0, the model reaches a satisfactory level of convergence within 10 iterations

with a compromise in the trade-off between the misfit and the model norm. The trade-

off curve is displayed in Fig 6.8 (b), in which the misfit is represented by [100 - variance
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Fig. 6.8. (a) The model and misfit norms as a function of local iterations of the LSQR algorithm for a

phase speed model GC0 at 100 s. (b) Trade-off curves for varying damping parameter λ. We choose

λ = 1.0 as a preferred damping for this example.
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Fig. 6.9. (a) Variance reductions for five sets of Rayleigh-wave phase speed models at 60 s as a function

of mode. (b) Variance reductions for the phase speed models GC0 for the first four modes as a function

of frequency. Other model sets also provide very similar variance reductions to this.

reduction(%)], where we define the variance reduction as
(

1 − |d− Gm|2 / |d|2
)

×100(%).

Thus, in this example, we chose λ = 1.0 as an appropriate damping for this model.

The other phase speed models for different frequencies and different modes show a similar

behaviour to Fig 6.8 with slight differences in the values of the damping parameter. For

each phase speed map, we choose appropriate damping which give the similar tradeoff

behaviour in Fig 6.8. In this study, as a suitable damping with a good compromise for

tradeoffs, we use λ from 0.8 to 1.2 for the fundamental modes, and from 0.6 to 0.8 for
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the higher modes, depending on the frequency. The trend of tradeoff is also similar in the

other four sets of models in Fig 6.7. Therefore, we use the same damping parameter as

used in GC0 for corresponding phase speed maps of the other model sets. Although the

models usually converge within 20 iterations with appropriate damping parameter λ, we

calculate up to 50 iterations to ensure a smaller misfit.

We show the variance reductions (VR) calculated for the five sets of phase speed models

of all modes at 60 s in Fig 6.9 (a). There are almost no conspicuous differences in the

VR between different sets of models, although the models derived using the influence zone

(i.e., GCiz, Riz-GC0 and Riz-GCiz ) show subtly smaller values of VR.

In Fig 6.9 (b), the variance reductions for all phase speed models of GC0 are displayed

as a function of frequency. The fundamental mode models tend to show somewhat smaller

VR of around 60-70 %, whereas the higher-mode models achieve higher VR of around 80

%. The other sets of models also show similar trend to Fig 6.9 (b).

Unlike the tomographic studies based on simple geometrical ray theory, it is not trivial

to visualise the resolution for the final tomography models considering finite frequency

effects, since such effects of finite frequency cannot simply be fully reconstructed by a

linearised forward modeling (as has been used in most conventional checker-board type

tests). One of the most desirable ways to assess our models would be to use numerical

waveform modeling in a full 3-D structure for all the source and receiver pairs and then

to invert them for a 3-D model using our three-stage approach. However, such numerical

techniques are not fully developed, yet require heavy computation and are prohibitive to

apply to large-scale inversion.

A simple measure of the resolution of the models can be derived from assessing the

diagonal elements of a resolution matrix R. The estimated solution of models mest with

the weighted damped least-squares inversion can be given by (e.g., Menke, 1984),

mest =
[

GTWdG + λ2I
]−1

GTWdd
obs. (6.23)

Since the data vector is related to the true model vector mtrue with the linear relation

dobs = Gmtrue, we can obtain the following equation for the model resolution matrix in a

weighted damped least-squares problem,

mest =
[

GTWdG + λ2I
]−1

GTWdGmtrue, (6.24)

= Rmtrue, (6.25)

where R = [GTWdG + λ2I]−1GTWdG is the model resolution matrix. If R is the

identity matrix for which all the diagonal elements are 1, each model parameter has been

determined uniquely. However, in general, R contains off-diagonal elements with the peak

around the diagonal components, and so there are some correlations between the model
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parameters. The damping parameters applied in the inversion also suppress the resolution

to some extent.

The diagonal elements of R can be expanded in the spherical B-spline basis, with an

appropriate normalisation nj for the jth basis function at a particular location (θ, φ) such

that
∑N
j njFj(θ, φ) = 1, to project the spatial resolution into a map. If all the diagonal

terms are 1, the resolution maps will be unity everywhere in the region of interests. Several

examples of the resolution maps are shown in the subsequent sections together with the

corresponding phase speed maps.

6.3.4 Multi-mode phase speed maps for Rayleigh waves

In this section we display several sets of phase speed maps at chosen periods. Extensive

sets of multi-mode phase speed maps Riz-GCiz are displayed in Appendix D. The five

types of phase speed maps of the fundamental-mode Rayleigh wave at 100 s are displayed

in Fig 6.10. As we can expect from the subtle differences in the diagrams of the variance

reductions (Fig 6.9), the five sets of models shows some degree of consistency. Thus, all

these models share similar features, that is, the fast velocity anomalies are seen in the

Archaean and Proterozoic blocks in the central and western Australia, whereas the slow

velocity anomalies lie in the eastern Phanerozoic region of the eastern Australia and in

the Coral and Tasman Sea (Fig 6.3).

The resolution of these models depends strongly on the coverage and types of the paths.

The number of ray paths counted in 2◦ × 2◦ cells for the model sets GC0 and Riz-GC0

at 100 s are visualised in Fig 6.11. For the finite-width rays, we count the cells which are

covered by the influence zone. Therefore, we can see more uniform coverage in Fig 6.11

(b) due to the finite-width of the rays, whereas the ray coverage with simple geometrical

ray is rather spotty. The other models with geometrical ray theory give the similar ray

coverage to Fig 6.11 (a) even with or without ray bending, whereas all the models with

the influence zone provide the coverage like in Fig 6.11 (b).

The spatial resolution maps, which are estimated from the diagonal elements of the

resolution matrix R, for the phase speed models in Fig 6.10 are displayed in Fig 6.12. Due

to the effects of damping applied in the inversions, the maximum resolution is suppressed

and cannot reach unity.

The models with geometrical ray theory (Fig 6.12 (a) & (b)) show higher resolution

where the coverage of path are sufficient, whilst the finite-frequency models (Fig 6.12

(c), (d) and (e)) show rather lower resolution due to inclusion of the spatial integration

around the paths. Although the latter models show lower resolution, the differences in the

resolution in the whole region of interest are rather small, that is, we can achieve more
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Fig. 6.10. Five types of phase speed maps of the fundamental-mode Rayleigh waves at 100 s. All the models

are shown as a perturbation from PREM. (a) A model GC0 derived from the great-circle approximation.

(b) An updated model Ray-GC0 with surface-wave ray tracing in the model (a). (c) An updated model

Riz-GC0 with ray tracing as well as the influence zone. (d) A model GCiz with the influence zone around

the great-circle paths. (e) An updated model Riz-GCiz from (d) using ray tracing and the influence zone.



6.3 Inversion for multi-mode phase speed maps 125

100˚E

100˚E

120˚E

120˚E

140˚E

140˚E

160˚E

160˚E

180˚

180˚

40˚S 40˚S

20˚S 20˚S

0˚ 0˚

(a) ray coverage for GC0 (Rayleigh 100 s)

100˚E

100˚E

120˚E

120˚E

140˚E

140˚E

160˚E

160˚E

180˚

180˚

40˚S 40˚S

20˚S 20˚S

0˚ 0˚

(b) ray coverage for Riz-GC0 (Rayleigh 100 s)

0 20 40 60 80 100

number of paths in a cell

Fig. 6.11. Density plot of the number of ray paths counted in 2◦ × 2◦ cells for models (a) GC0 and (b)

Riz-GC0 at Rayleigh wave 100 s. In case of (b), cells which are covered by the influence zone are also

counted.

uniform spatial resolution. This is quite helpful for the assessment of the models with

unevenly covered models, which is the case for most tomography models at present.

Now let us closely look at the differences in the models shown in Fig 6.10. Some region

where there are strong local heterogeneity in the ray theoretical models (GC0 and Ray-

GC0 ) are smoothed out in the finite-frequency models (GCiz, Riz-GC0 and Riz-GCiz ).

This effect is especially conspicuous in the Tasman Sea and in the Proterozoic blocks in
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Fig. 6.12. Map projections of the diagonal elements of the resolution matrix R for the models in Fig 6.10.

The same damping of λ = 1.0 is applied to all the models.
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the central Australia. We can also see the extremely good spatial correlations between the

updated models with finite frequency Riz-GC0 and Riz-GCiz, which gives the correlation

coefficients of more than 0.99 whilst the correlations between the other models are just

around 0.95.

Other examples of phase speed models of the first three modes for GC0 and Riz-GC0 at

60 s are displayed in Fig 6.13. We now see the effects of the finite frequency on the different

modes at the same frequency. The smoothing effects, which arise from the inclusion of the

finite-frequency effects in the inversion process, are common in all the updated models,

but the effects are clearer in the higher-mode models because of the wider influence zone

arising from the faster absolute phase speeds.

The velocity perturbation in the higher mode models are usually smaller than the fun-

damental mode model implying that the velocity perturbation in the deeper part of the

mantle can be comparatively small. Therefore, for the higher mode models, the effects of

off-great-circle propagation is not critical, resulting in almost no differences in the con-

figuration of the velocity structure in GC0 and Riz-GC0. However, for the fundamental

mode at 60 s, we can see a clear difference in the boundaries between the lower and faster

phase speed anomalies in the eastern Australia, which indicates that the importance of

the effects of ray-bending in shorter period waves.

The projections of the corresponding resolution maps are shown in Fig 6.14. Again,

we see the suppressed local resolution but more uniform resolution in the finite frequency

models. Although the ray paths for these models are the same, there are differences in

the resolution of models due to the damping parameter and the weighting applied to the

data.

6.4 Inversion for local shear wave speed models

The third stage is to invert for a set of local shear wavespeed model using local multi-mode

dispersion information assembled from a set of phase speed maps derived in the second

stage. In this section, the inversion for the shear wavespeed structure is formulated using

the least-squares generalised inversion scheme of Tarantora & Valette (1982).

6.4.1 Formulation of inversion

Since the nonlinear inversion procedure of Tarantora & Valette (1982), which has been

widely used in much of surface wave studies (e.g., Montagner & Jobert, 1981; Nataf et al.,

1986; Cara & Lévêque, 1987; Nishimura & Forsyth, 1989), has already been explained in

many papers, we only briefly explain the method of inversion.
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Fig. 6.13. Two sets of phase speed maps of the first three modes of Rayleigh waves at 60 s. All the models

are shown as a perturbation from PREM. (a) The fundamental-mode model GC0 derived from the great-

circle approximation. (b) The fundamental-mode model Riz-GC0 updated from (a) considering both the

influence zone and ray path bending. (c) Same as (a) but the first higher mode model. (d) Same as (b)

but the first higher mode model updated from (c) (e) Same as (a) but the second higher mode model. (e)

Same as (b) but the first higher mode model updated from (e)
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Fig. 6.14. Map projections of the diagonal elements of the resolution matrix R for the corresponding

models in Fig 6.13. The damping for these models are λ = 1.2 for (a) and (b), λ = 0.8 for (c) and (d),

and λ = 0.6 for (e) and (f).
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6.4.1.1 Generalised nonlinear inversion

We consider a problem where the observed data d is represented as a function of model

parameters p as follows,

d = g(p), (6.26)

where d, in this case, consists of a set of local multi-mode phase speed perturbation δc(ω)

as function of ω. The model parameter vector p consists of a 1-D profile of the local shear

wavespeed perturbation δβ(z) as a function of depth z. The phase speed perturbation

depends also on the P wave speed and density, but in the intermediate period range,

which is of interest in this study, there are only a slight effects from these parameters.

Therefore, we only consider the shear wavespeed perturbation in this study.

With an appropriate reference model p0, a model parameter vector at the (k + 1)th

iteration for an underdetermined problem can be extracted as (Tarantola & Valette, 1982),

pk+1 = p0 + CppG
T
k

(

Cdd + GkCppG
T
k

)−1
[d− g(pk) + Gk(pk − p0)] , (6.27)

where pk is the model vector at the kth iteration, Cdd is the a priori data covariance

matrix, Cpp is the a priori model covariance matrix and Gk the kernel matrix which

consists of the partial derivatives of the data with respect to the model parameters with

components, for the ith data and jth model parameter,

Gij =
∂di
∂pj

. (6.28)

In this study, (6.28) represents the partial derivatives of phase speeds with respect to shear

wave speeds.

The model resolution matrix for the algorithm of Tarantora & Vallette (1982) can be

given by (e.g., Montagner & Jobert, 1981),

R = CppG
T
k

(

Cdd + GkCppG
T
k

)−1
Gk. (6.29)

The nature of the resolution matrix R is the same as that discussed in the previous section

for the inversions in the second-stage. By investigating the rows of R, we can check how

well the model parameters has been resolved.

6.4.1.2 A priori information

We assume that the a priori model covariance matrix Cpp can be represented by a Gaussian

distribution as follows,

Cpp(ri, rj) = σ(ri)σ(rj) exp

{

−1

2

(ri − rj)
2

L2

}

, (6.30)
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where ri is the depth of the ith model parameter, σ(ri) is the standard deviation for the ith

model parameter and L is the average correlation length between the model parameters

ri and rj .

The standard deviation σ constrains the amplitude of variations of model parameters,

and the correlation length L controls the smoothness of the model variations with depth,

and so determines how rapidly the model can vary as a function of depth. The choice of

these parameters depends simply on one’s preference.

Previous studies have shown that the shear wavespeeds in the upper mantle vary from

peak to peak around 0.5 km/s over 100 km (e.g., Nishimura & Forsyth, 1989). We prefer

models which vary smoothly with depth but allow some degree of rapid variation so that

we can treat quick change with large wavespeed perturbation. Therefore, we choose the

value of correlation length L ≈ 20 km, and the σ ≈ 0.1 km/s over the depth range below

Moho. For the shallower structure above the Moho, the correlation length is chosen to be

L ≈ 5 km so that more rapid variation in the shallower structure is allowed.

As reference models used to initiate the inversion, we use the PREM for the oceanic

region and the PREMC, whose upper mantle structure is modified to represent the conti-

nental structure, for the continental region. Both PREM and PREMC models are modified

to have smooth variation across the 220 km, 400 km, and 670 km boundaries. Prior to

the inversion, the crustal structure of the reference model has been corrected by using the

3SMAC model (Nataf & Ricard, 1996).

6.4.2 Local shear wavespeed models

The local phase dispersion curves are assembled from the multi-mode dispersion maps at

2◦ grid points along both longitude and latitude, and then are inverted for local shear

wavespeed structures.

The number of iterations required for the satisfactory convergence achieved through the

inversion varies with the choice of a reference model and a priori information. With an

appropriate choice of the reference model to start the inversion in (6.27), the model can

converge in the first few iterations, since the nonlinearity between the phase dispersion

and shear wavespeed is quite moderate. However, typical 1-D shear wavespeed models

in the Australian region are generally quite far from the PREM, showing a quite large

velocity perturbation in the upper 250 km.

We therefore repeat the whole process of inversion (6.27) using updated reference models

which are derived from the previous inversions. This allows us a good recovery of large

velocity perturbations which sometimes reach about ±10% from the PREM. In most
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Fig. 6.15. The locations of local shear wavespeed models in Fig 6.16 are shown as purple dots and those

in Fig 6.17 as red triangles, together with the Rayleigh wave phase speed map of fundamental mode at

100 s.

cases, the shear wavespeed models converges at satisfactory levels within the first 5 to 10

iterations.

We display some examples of the local 1-D shear wavespeed profiles along a latitudinal

line (24◦S) and a longitudinal line (130◦E) for the locations shown in Fig 6.15.

The 1-D shear wavespeed models for Riz-GCiz along the 24◦S latitude across the middle

of the Australian continent is shown in Fig 6.16. We can see significant variations in the

shear wavespeed structure across the continent, especially above 300 km. In the western

region, there are prominent high velocity anomalies in the upper 300 km corresponding

to the Proterozoic and Archaean cratonic region in the western Australia, whereas a

conspicuous set of low velocity anomalies are seen from 145◦ to the east representing slow

velocities in the Phanerozoic region of the eastern Australia and the Coral Sea.

The other set of 1-D shear wavespeed models along the N-S lines at 130◦ E longitude are

displayed in Fig 6.17. We can again see the high velocity anomalies near the centre of the

Australian continent in the upper 300 km. Along this longitude, there is a continent-ocean

boundary around 32◦S latitude, and we can identify the slower velocities to the south of

the boundary and the faster anomalies to the north suggesting the rapid changes in the

shear wavespeed at the boundary. The slower anomalies around 15◦S correspond to a
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Fig. 6.16. Local shear wavespeed models along the 24◦ south latitude with varying longitude. Locations

of these models are indicated as purple dots in Fig 6.15.
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Fig. 6.18. Resolution kernels for a shear wave speed structure beneath (24◦S, 140◦E).

patch of slower wavespeeds near the northern edge of Australia which can be seen in the

phase speed maps (Fig 6.10, 6.15).

The resolution kernels of a typical 1-D shear wavespeed profile is shown in Fig 6.18.

It is apparent that the shallower parts of the 1-D structure from 100 to 250 km are

comparatively well constrained, whereas the deeper part of the upper mantle are not well

resolved even though we include information of up to the third higher mode. This is

mainly due to the smaller absolute sensitivity of the higher modes to the shear wavespeed

structure compared to that of the fundamental mode. Still we can see some sensitivity

around 400 km depth where it is almost impossible to resolve only with the fundamental

mode at the maximum period of 150 s used in this study.

6.5 3-D models in the Australian region

Repeating the inversions for the local shear wavespeed profile across the whole region, we

can obtain the final 3-D models. Since the minimum scale length of the lateral hetero-

geneity that can be resolved by our phase speed inversion are longer than a few hundred

kilometers, corresponding to the minimum wavelength used in this study, we assemble
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the local phase dispersion curves for each 2◦ × 2◦ cell and invert them for the local shear

wavespeed structure. We have obtained five types of 3-D shear wavespeed models from

the corresponding sets of phase speed models in Fig 6.7.

In this section, we mainly focus on the comparison of these 3-D models, especially how

the models can be improved by considering the influence zone of surface wave paths. A

3-D model derived from a 2-stage approach is also displayed for the comparison of the

models derived from the different inversion techniques. Full sets of these 3-D models are

shown in Appendix E.

6.5.1 Comparison of 3-D models I: two-stage and three-stage approach

Although the three-stage approach for surface wave tomography is able to provide us with

a number of benefits for improving 3-D models, the process of obtaining a final 3-D model

is rather indirect compared to the conventional two-stage approach. Therefore, comparing

the 3-D models derived from these two different approach is helpful for assessing how the

differences in the inverion processes affect the final 3-D models.

In this section, to compare the models derived from different types of inversion scheme,

we first obtain 3-D models using a form of two-stage inversion scheme with the direct use

of the path-specific 1-D profiles of Debayle & Kennett (2002) that are used to estimate

multi-mode phase speeds in this study. Following arguments in the appendix to Debayle

& Kennett (2000a), a linear relation for a path-average shear wavespeed perturbation at

a particular depth z can be given as,
〈

δβ

β

〉obs
∣

∣

∣

∣

∣

z

=
1

∆

∫

g.c.

δβ(s)

β

∣

∣

∣

∣

z

ds. (6.31)

This linear relation can be solved in the same way as the phase speed inversion explained

in the preceding section, using the LSQR algorithm for a damped least-squares problem

(6.22).

The 3-D model derived from the two-stage inversion scheme shows similar behaviour

in the trade-off between the misfit and model norm, and thus we choose an appropriate

damping parameter which shows tradeoff behaviour similar to Fig 6.8. Variance reductions

achieved through the direct use of the path-average 1-D models are more than 70 % for

the models above 200 km, whereas, for the models below 250 km, the variance reduction

are achieved around 40 %, but the model explain the data quite well with respect to the

estimated errors.

The 3-D models derived from the two-stage and three-stage approach are displayed in

Fig 6.19. The three-stage model has been derived from a set of phase speed models GC0,

whereas the two-stage models are directly retrieved from the path-specific 1-D profiles.
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Fig. 6.19. 3-D shear wavespeed models in the Australian region derived from the two-stage approach (left

column) and from the three-stage approach (right column) at the depth from 100 to 250 km with 50 km

increment. The three-stage model is the GC0 model which is derived from the great-circle approximation.

Reference wavespeeds are 4.41 km/s at 100 km, 4.43 km/s at 150 km, 4.51 km/s at 200 km, 4.61 km/s at

250 km.
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Despite of the intrinsic differences in the inversion processes, the final 3-D models are

extremely well correlated. The geographical correlation coefficients of these velocity struc-

tures exceed 0.95 at all depths. Resolution maps for the two-stage models are similar to

those shown in Fig 6.14 (a,c,e) depending on the depth. Although the process of recov-

ering these models are different, the underlying assumptions are the same. That is, all

the surface wave paths are assumed to lie along the corresponding great-circle and no

finite-frequency effects are considered. The similarity of these models indicate that the

roundabout route to reach the final 3-D model in the three-stage approach (i.e., the use

of the intermediary of the phase speed maps) does not bring in any noticeable error in

the final models in the intermediate frequency range used in this study. This fact also

ensures the profit from the three-stage approach, which is more convenient to incorporate

with various phenomena of surface wave propagation such as the frequency dependent off-

great-circle propagation and the influence zone around surface wave paths to take account

of the finite-frequency effects.

It should be note that the appearance of these 3-D models are different from that of

Debayle & Kennett (2000a) in Fig 1.2 because of the differences of the data set. However

the 3-D models in Fig 6.19 are quite similar to that of Debayle & Kennett (2002) whose

date sets is utilised in this chapter, despite the different inversion technique.

6.5.2 Comparison of 3-D models II: three-stage models

Using the five sets of phase speed models in Fig 6.10, we obtain five types of corresponding

3-D shear wavespeed models. The shear wavespeed models at 150 km depth for the

different types of 3-D models are shown in Fig 6.20. The major features of these models

are quite similar to those of the corresponding phase speed maps in Fig 6.10, sharing the

similar patterns of the fast and slow wavespeed anomalies.

The models based simply on the geometrical ray theory shown in Fig 6.20 (a) and (b)

have rather similar patterns of heterogeneities and their amplitude. This suggests that

the process of model update only considering ray path bending does not have a significant

impact on the final models at the frequency range in this study. In other words, the

assumption of the surface wave propagation along the great-circle does work quite well at

the period longer than 40 seconds. This can also be expected from the results of two-point

ray shooting experiment shown in section 2.7, which show that the actual ray paths with

the minimum travel times in the sense of Fermat’s principle, are not very far away from

the corresponding great-circles.

On the other hand, the models derived including the influence zone around the surface

wave path (Fig 6.20 (c), (d) and (e)), share some similar features of somewhat smoothed
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Fig. 6.20. Five types of shear wave speed models at 150 km derived from the corresponding phase speed

maps in Fig 6.10 based on the three-stage approach. Reference wavespeeds are the same as Fig 6.19.
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heterogeneities, regardless of the inclusion of effects from the off-great-circle propagation.

In this section, we make some more comparisons of these models especially focusing on

how the influence zone affects the models. Thus, we do not present a comparison of the

models GC0 and Ray-GC0 since both models are simply based just on the geometrical

ray theory (Full sets of these models are displayed in Appendix E).

6.5.2.1 GC0 and Riz-GC0

We display two sets of shear wavespeed models in Fig 6.21, GC0 derived from the great-

circle approximation and Riz-GC0 updated from GC0 taking both the off-great-circle

propagation and the influence zone into account.

We can see that some small patch-like features in the model GC0 are smoothed out

in the Riz-GC0. This is especially apparent near the faster velocity anomalies beneath

the Proterozoic blocks in the centre of the Australian Continent, and also in the slower

velocity regions in the Coral and Tasman Sea to the east off-shore of Australia.

The smoothing effects in the finite-frequency model Riz-GC0 become clearer in the

deeper parts of the mantle (≥ 150 km). This can be attributed to the fact that the

structures at these depths are constrained mainly by the higher modes and long-period

fundamental modes whose influence zones are wider than those for the short-period fun-

damental mode.

The effect of the smoothing caused by the finite-width of the rays is also preserved in

the cross sections shown in Fig 6.22, especially in the region where there are noticeable

smoothing in the heterogeneity in the map projections in Fig 6.21, i.e., beneath central

Australia and the oceanic region to the east of Australia.

In either model, we can clearly see higher velocity anomalies down to depths of 200 to

250 km beneath the middle and western parts of Australia, corresponding to the conti-

nental lithosphere of the Australian Continent. The depth of the root of such continental

lithosphere can be estimated from the largest velocity gradient in the wavespeed profiles.

In a region just beneath the Proterozoic blocks in the central Australia (around 20◦S and

132◦), the continental lithosphere seem to reach 300 km. This is quite consistent with

the results of Simons et al. (1999) who have also suggested that the higher wavespeed

anomaly in this region is likely to persist to depth over 300 km.

One of the major difference from the models of Simons et al. (1999) is that our models

do not show extreme high wavespeed anomalies in the eastern Australia beneath 250 km.

At this depth, the wavespeed perturbation from the PREM become very small beneath

the Australian Continent and the maximum perturbation do not exceed ±2%. The cause

of the differences can be attributed to the differences in the data analysis, that is, the
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Fig. 6.21. 3-D shear wavespeed models derived from the great-circle approximation based on the geometri-

cal ray theory (GC0 in the left column) and those updated from GC0 including the effects of off-great-circle

propagation and the influence zone (Riz-GC0 in the right column) at the depth from 100 to 250 km with

50 km increment. Reference wavespeeds are the same as Fig 6.19.
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Fig. 6.22. Cross sections of 3-D shear wavespeed models in Fig 6.21. (a) N-S cross sections through varying

longitudes for the model GC0. (b) E-W cross sections through various latitudes for the model GC0. (c)

Same as (a) but for the model Riz-GC0. (d) Same as (b) but for the model Riz-GC0.

waveform fitting procedures are essentially different. Our data set of path-specific 1-D

models of Debayle & Kennett (2002) have been derived from fitting cross-correlograms as

secondary observables as we have explained in the section 6.2, whereas the Simons et al.

(1999) have used a procedure of fitting the multi-mode waveforms directly for path-specific

1-D models (e.g., Nolet, 1990), which is more sensitive to the choice of initial models to

start the inversion (Hiyoshi, 2001).
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6.5.2.2 GCiz and Riz-GCiz

We next compare a 3-D model GCiz derived from the inversion including the influence

zone around the great-circle and an updated model Riz-GCiz from the GCiz considering

the effects of both off-great-circle paths and the influence zone (Fig 6.23 and 6.24).

Since both sets of models include the effects of the finite-frequency, both models con-

tain smoothed characters caused by the use of the influence zone. The patterns of hetero-

geneities in these models are very similar and there is little remarkable differences between

these two sets of models. Also, as we have already seen in Fig 6.20, two sets of the finite-

frequency models, Riz-GC0 in Fig 6.21 and Riz-GCiz in Fig 6.23, are extremely similar at

all depths, even though these models are updated from different reference heterogeneous

models. These facts suggest that the process of global iteration (i.e., the update process

for the models) using the influence zone gives quite consistent results even when we use

different initial models.

Higher wavespeed anomalies in the western Australia just beneath the NWAO station,

corresponding to the root of the Archaean craton seem to get fainter at a depth of 250

km of Riz-GCiz (Fig 6.23 (h); Fig 6.24 (d) at 30◦S). Similar features of higher wavespeed

anomaly in this region at this depth can be seen in the comparisons of models GC0 and

Riz-GC0 (Fig 6.21 (d) and (h)).

Earlier studies (Simons et al., 1999; Debayle and Kennett, 2000a) have shown high

wavespeed anomalies at this depth, similar to models GC0 and GCiz. We may say the

weakened higher wavespeed anomaly in this region in the models Riz-GC0 and Riz-GCiz

can be caused by the inclusion of the effects of ray-path bending and the influence zone

about the paths.

However, with the presently available path coverage, this region has limited resolution

because of the sparse path coverage. Therefore we need to be careful about discussing

the structure in the western blocks of the Australian Continent. Even so, the ray tracing

experiments shown in chapter 2 suggest that conspicuous ray path deviations from the

great-circle are likely to appear in the paths from the Tonga-Kermadec region to the

NWAO station. Therefore, the use of the ray tracing in phase speed structures should

play a role to suppress some undesirable effects caused by large ray path deviations at the

NWAO station.

6.6 Discussion

In this chapter we have explicitly formulated the three-stage inversion which enables us

to incorporate off-great-circle propagation and the influence zone for surface wave paths
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Fig. 6.23. 3-D shear wavespeed models derived from the great-circle approximation with the influence

zone (GCiz in the left column) and those updated from GCiz including the effects of off-great-circle

propagation and the influence zone (Riz-GCiz in the right column) at the depth from 100 to 250 km with

50 km increment. Reference wavespeeds are the same as Fig 6.19.
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Fig. 6.24. Cross sections of 3-D shear wavespeed models in Fig 6.23. (a) N-S cross sections through varying

longitudes for the model GCiz. (b) E-W cross sections through various latitudes for the model GCiz. (c)

Same as (a) but for the model Riz-GCiz. (d) Same as (b) but for the model Riz-GCiz.

in the frequency and mode domains. We have also applied the new technique to the

Australian region and have displayed several styles of new 3-D Australian models.

The three-stage inversion scheme is a rather indirect approach for recovering the 3-

D shear wavespeed models, compared to the conventional two-stage approach used in

most regional studies (e.g., Nolet, 1990, Debayle & Kennett, 2000a). However, a model

derived from the great-circle approximation (GC0 ) using the three-stage approach shows
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quite similar features to a 3-D model obtained from the 2-stage inversion scheme with the

direct use of path-specific 1-D models. This suggests that the use of phase speed maps as

intermediaries does not cause significant errors in the final 3-D model.

The advantage of the three-stage approach is that various types of information can be

brought together in a common formulation. The polarization anomalies due to ray path

bending and the influence zone that takes account of finite frequency effects of surface

waves can be efficiently brought together by working with multi-mode phase speed maps

at each frequency.

In practical applications, the three-stage inversion scheme requires the computation

of a number of phase speed maps to better constrain the final 3-D models, followed by

inversions for local shear wavespeed models. Therefore, in total, the three-stage approach

requires more computation than for the two-stage process, even though our approach is

still efficient enough to treat complicated phenomena of off-great-circle propagation and

the finite frequency effects.

The most time consuming process is the computation of the inversion kernels (6.16)

in the second stage. In particular, when we incorporate ray tracing for all the paths

in phase speed maps, the computation time becomes almost doubled compared to that

with the great-circle approximation. The inclusion of the influence zone further requires

us to calculate spatial integrations (rather than line integrations) over a space that is

covered by the influence zone. The total amount of computation for the spatial integration

depends largely on the mode and frequency, because the width of the influence zone to be

integrated varies significantly with these factors. In the practical modeling in this thesis,

the computation for the models GCiz requires more than 5 times than that for GC0, and

for Riz-GC0 and Riz-GCiz, they require more than 10 times of computation time than

GC0.

Still, the concept of the influence zone allows us an approximate treatment of the finite-

frequency effects rather than needing to work with a more rigorous formulation including

the effects of scattering from much wider region far away from the central ray, which will

require much more computations than our approach (see chapter 7).

There are still some points that can be improved in future studies, e.g., spatial parame-

terisation to treat the varying sizes of the geographic cells, appropriate crustal corrections

to better compute phase speeds at shorter period ranges (around 40 s). We will discuss

future improvements for our technique of surface wave tomography in chapter 8.
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Beyond ray theoretical tomography

7.1 Introduction

In the preceding chapters, we have investigated a form of 2-D sensitivity kernels for surface

wave phase based on the simple concept of the influence zone defined in chapter 4. These

finite-width kernels have been applied to the practical tomographic inversion for surface

waves in chapter 6. However, as we have discussed in chapter 4, the influence zone does not

encompass the entire region which could give rise to scattering and diffraction of surface

waves. In this chapter, we further investigate the 2-D sensitivity kernels for surface wave

phase and amplitude based on surface wave potential theory. This leads to a treatment

of scalar-wave type propagation of the surface waves in laterally heterogeneous structure

based on Born and Rytov approximations.

Studies on the diffraction and scattering of seismic waves have been tackled by many

researchers based on single scattering theories using Born and Rytov approximations. To-

mographic inversion considering the diffraction effects of seismic wave propagation was in-

troduced by Devaney (1984) in the context of exploration geophysics based on his method

of diffraction tomography for ultrasound waves. Wielandt (1987) discussed the effects

of diffraction on body wave travel times, and showed that diffracted waves could have

noticeable amplitudes and that the simple ray approximation breaks down in such cir-

cumstances.

For surface waves, Yomogida & Aki (1987) initiated tomographic inversion with finite-

width kernels derived from their asymptotic formulation in terms of Gaussian beams for

surface waves (Yomogida, 1985; Yomogida & Aki, 1985). They produced 2-D sensitivity

kernels for phase speed structure based on the Born and Rytov approximations and applied

them to the reconstruction of phase speed maps in the Pacific region using both the phase

and amplitude of surface waves. Their approach is based on the assumption of single-mode

146
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surface wave propagation using a 2-D scalar wave equation. Tanimoto (1990b) tackled this

kind of problems for surface waves with an alternative approach using potential theory

taking account of the inter-mode conversion of surface waves in a phase speed domain.

This potential representation was further extended by Tromp & Dahlen (1993) to be able

to accommodate local radial eigenfunctions.

Červený & Soares (1992) proposed an efficient way to estimate the Fresnel volume

around body-wave paths based on the paraxial ray theory. Subsequently Vasco et al.

(1995) applied such paraxial Fresnel volumes to reconstruct seismic images from borehole

data, and they showed that tomographic inversion with their time-consuming exact kernels

and with more efficient paraxial kernels give comparable results.

Sensitivity kernels for body wave travel times at finite frequency have been proposed by

many researchers (Luo & Shuster,1991; Woodward, 1992; Yomogida, 1992; Vasco & Majer,

1993; Li & Tanimoto, 1993; Marquering, Dahlen & Nolet, 1999; Dahlen, Hung & Nolet

2000; Zhao, Jordan & Chapman 2000). Li & Tanimoto (1993) have obtained 2-D sensitivity

kernels for long-period body waves using asymptotic normal mode coupling, and Li &

Romanowicz (1995) applied this method for waveform inversion for a global Earth model.

Marquering & Snieder (1995) have proposed sensitivity kernels using surface-wave mode

rather than normal mode to calculate mode-branch coupling, based on the mode coupling

theory of Kennett (1984) and the first Born scattering theory of Snieder (1986). Snieder

& Lomax (1996) have investigated the effects of velocity perturbations in the structure on

the phase and amplitude of the scalar wavefield using the Rytov approximation.

Meier et al. (1997) proposed a way to perform inversion for surface waves considering

diffraction effects based on the WKBJ approximation and the first Born scattering theory

of Snieder & Nolet (1987). Marquering et al. (1998) have also used the linearised scattering

theory to calculate 3-D waveform sensitivity kernels. Marquering et al. (1999) calculated

body-wave travel time kernels using waveform kernels based upon the surface-wave mode

coupling. Dahlen et al. (2000) reformulate the body wave travel time kernels using the

Born scattering of body waves; they also adopt the paraxial ray theory to simplify the

calculation of time consuming two-point ray shooting. Hung et al. (2000) showed that

the kernels with paraxial approximation can be a good representation of ray theoretically

“exact” kernels in vertically heterogeneous and laterally homogeneous media. Zhao et al.

(2000) proposed body wave travel time kernels based on normal mode theory and suggest

that the sensitivity on the central ray path is smaller than the surrounding area but not

exactly zero as in the sensitivity kernels derived from the ray theory.

In chapter 4, we have applied the technique of Červený & Soares (1992) for surface

waves and obtained paraxial Fresnel areas around the central ray path, and proposed a



7.2 General expressions for sensitivity kernels based on single scattering theory 148

concept of the influence zone in which wavefields are coherent. The major target of the

influence zone is slightly different from the other studies on the surface wave scattering

because the influence zone of our definition only represents the sampling regions around

the central ray path, and does not explain the full effects of scattering and diffraction in

the entire region around the path.

In order to investigate how the velocity structure affects the surface wavefield, in this

chapter, we first derive general expressions for the sensitivity kernels of surface waves

based on the Born and Rytov approximations (e.g., Born & Wolf, 1999) using a surface

wave potential representation following Tanimoto (1990b) and Tromp & Dahlen (1993).

The general forms of these kernels are similar to those given by Yomogida & Aki (1987),

Woodward (1992) and Snieder & Lomax (1996). We then employ asymptotic Green’s

functions for explicit formulations of the sensitivity kernels. The Born kernels are directly

related to the waveform perturbation, whereas the Rytov kernels are related to the loga-

rithm of the wavefield, which yields a separation of the log amplitude term and the phase

of the wavefield. Thus, there are advantages in working with the Rytov kernels for phase

speed inversion. We will show some examples of 2-D sensitivity kernels for surface-wave

phase speed which allow phase speed inversion for surface waves considering the effects of

surface wave scattering and diffraction in a first-order approximation.

7.2 General expressions for sensitivity kernels based on single scattering

theory

7.2.1 Born approach

Following Tanimoto (1990b) and Tromp & Dahlen (1993), Love and Rayleigh wave dis-

placement fields can be represented in terms of surface wave potentials U which satisfy a

spherical Helmholtz equation. The monochromatic surface wave potential U in laterally

heterogeneous media can be expressed as,

U(r, ω|rs) = U0(r, ω|rs) + δU(r, ω|rs), (7.1)

where U0(r, ω) is a surface wave potential in a background (reference) model at a position

r and frequency ω, and δU is a perturbed potential of surface waves generated by lateral

heterogeneity.

The surface wave potential U corresponds to a scalar-type wave and is written as U =

A exp(iψ), where the amplitude A and the phase ψ are slowly varying functions of locations

r. Actual surface wavefields in 3-D media should be in a vector form with an appropriate

radial eigenfunctions, however, since our major objective in this study is to investigate the

effects of the velocity structure around a path on the phase perturbation of surface waves,
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such a potential representation allows us a reasonable and efficient treatment of the path

effects on phases.

The surface wave potential U satisfies a spherical Helmholtz equation (Tanimoto, 1990b;

Tromp & Dahlen,1993),
[

∇2
1 + k2(r, ω)

]

U(r, ω|rs) = f(rs, ω), (7.2)

where ∇1 is the surface Laplacian, k is the wavenumber which is related to surface-wave

phase speed c(r, ω) with k = ω/c, and f is a source term at a position rs.

Using the reference phase speed c0(r, ω), (7.2) can be modified to,
[

∇2
1 +

ω2

c20(r, ω)

c20(r, ω)

c2(r, ω)

]

U(r, ω|rs) = f(rs, ω), (7.3)

and thus,

[

∇2
1 + k2

0(r, ω)
]

U(r, ω|rs) = k2
0(r, ω)

[

1 − c20(ω)

c2(r, ω)

]

U(r, ω|rs) + f(rs, ω), (7.4)

where k0(r, ω) = ω/c0(r, ω). Note that we allow spatial variation of the reference wavenum-

ber k0 and the reference phase speed c0. The term in brackets of right-hand side in (7.4)

can be approximated as,

1 − c20
c2

=
c2 − c20
c2

=
2cδc − (δc)2

c2
≈ 2δc

c
, with δc = c− c0. (7.5)

Thus (7.4) can be reduced to,

[

∇2
1 + k2

0

]

U(r, ω|rs) =
2k2

0δc

c
U(r, ω|rs) + f(rs, ω), (7.6)

where we omit the dependency of phase speed and wavenumber on location r and on

frequency ω. Hereafter we will omit these variables unless otherwise specified.

The reference surface-wave potential U0 may also be represented by a scalar Helmholtz

equation in the reference medium,
[

∇2
1 + k2

0

]

U0(r, ω|rs) = f(rs, ω). (7.7)

We now introduce a scalar Green’s function G(r, ω|r′) which satisfies,
[

∇2
1 + k2

0

]

G(r, ω|r′) = −δ(r − r′), (7.8)

with a boundary condition of outgoing wave radiation as r̂ moves away from r̂′ (Dahlen,

1980). Substituting (7.1) into (7.6) and using (7.7), we obtain

[

∇2
1 + k2

0

]

δU(r, ω|rs) =
2k2

0δc

c
U(r, ω|rs). (7.9)

With the Green’s function defined in (7.8), the perturbed surface-wave potential δU may

be expressed as,
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δU(r, ω|rs) =

∫ −2k2
0δc

c
G(r, ω|r′)U(r′, ω|rs)dr′. (7.10)

Replacing U in the right-hand side of (7.10) with a reference surface-wave potential U0

(the first Born approximation),

δU(r, ω|rs) =

∫ −2k2
0δc

c
G(r, ω|r′)U0(r

′, ω|rs)dr′ (7.11)

=

∫

KU (r, r′, rs, ω)

(

δc

c

)

dr′. (7.12)

This is a general form of a linearised equation for surface wave perturbations represented

as an spatial integral of the phase speed perturbation.

If we invert surface waveforms for a model parameter δm = δc/c using (7.12), the

general form of the sensitivity kernels KU for the surface wave potential based on the

Born approximation can be represented as,

KU (r, r′, rs, ω) =

[

∂U

∂m

]

ω
= −2k2

0(r
′, ω)G(r, ω|r′)U0(r

′, ω|rs). (7.13)

The integral equation (7.12) manifests that the Born kernel KU relates the phase speed

perturbation to the perturbation of the spectrum of the waveform which may be caused

by lateral heterogeneity. In most linearised surface wave tomography for phase speed

structure, we generally work with phase and amplitude information separately. In such a

case, Rytov’s method would provide a more direct relation to the phase and amplitude of

surface waves to the model parameters as explained in the next section.

7.2.2 Rytov approach

Now we employ Rytov approximation for obtaining sensitivity kernels for phase and am-

plitude perturbation. In the Rytov methods, the logarithm of the wavefield (Φ = lnU) is

considered instead of the wavefield itself. We first express the surface wave potential U

as,

U(r, ω|rs) = exp[Φ(r, ω|rs)] (7.14)

= A(r, ω|rs) exp(iψ(r, ω|rs)), (7.15)

where A is the amplitude and ψ is the phase term for the surface wave potential. By

taking the logarithm, Φ can be divided into real and imaginary parts,

Φ = lnA+ iψ, (7.16)

where we omit the spatial and frequency dependence. Substituting (7.14) into (7.6) yields,

[

∇2
1 + k2

0

]

exp[Φ] =
2k2

0δc

c
exp[Φ] + f. (7.17)
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Using the relationship ∇2
1 exp[Φ] = ∇2

1Φ + (∇1Φ)2, (7.17) can be written as,

∇2
1Φ + (∇1Φ)2 = −k2

0

(

1 − 2δc

c

)

+ f exp[−Φ]. (7.18)

Now, let us assume a perturbation of Φ,

Φ = Φ0 + δΦ (7.19)

where Φ0 is the logarithm of a reference waveform which will satisfy the equation,

∇2
1Φ0 + (∇1Φ0)

2 = −k2
0 + f exp[−Φ]. (7.20)

Substituting (7.19) and (7.20) into (7.18) and assuming Φ0 ≫ δΦ yields,

∇2
1δΦ + 2∇1Φ0∇1δΦ =

2k2
0δc

c
, (7.21)

where we neglect a second order term. By assuming δΦ = P (r, ω) exp[−Φ0(r, ω)], (7.21)

can be reduced to a Helmholtz equation as follows,

[

∇2
1 + k2

]

P (r, ω) =
2k2

0δc

c
exp[Φ0]. (7.22)

With the Green’s function introduced in (7.8), P may be expressed as,

P (r, ω|rs) = δΦeΦ0 =

∫ −2k2
0δc

c
G(r, ω|r′) exp[Φ0(r

′, ω|rs)]. (7.23)

Finally, we obtain an integral equation for δΦ,

δΦ(r, ω|rs) =

∫ −2k2
0δc

c

G(r, ω|r′)U0(r
′, ω|rs)

U0(r, ω|rs)
dr′ (7.24)

=

∫

KΦ(r, r′, rs, ω)

(

δc

c

)

dr′. (7.25)

Thus the sensitivity kernels for Φ can be given by,

KΦ(r, r′, rs, ω) =

[

∂Φ

∂m

]

ω
= −2k2

0

G(r, ω|r′)U0(r
′, ω|rs)

U0(r, ω|rs)
. (7.26)

From the relationship (7.16), the imaginary part of KΦ relates the phase speed pertur-

bation δc to the phase perturbation δψ caused by lateral heterogeneity whereas the real

part corresponds to the sensitivity for the logarithm of the amplitude term A. These are

explicitly derived from (7.25),

δψ =

∫

Im {KΦ}
(

δc

c

)

dr′, (7.27)

δ lnA =

∫

Re {KΦ}
(

δc

c

)

dr′. (7.28)

In most surface wave tomography, the phase perturbation is first measured from ob-

served seismograms, and perturbations are inverted for phase speed structure. Therefore,

the integral equations (7.27) and (7.28) can be used directly for 2-D phase speed inversion
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based on the phase and amplitude measurements for surface waves. In Section 4, we will

show examples of the sensitivity kernels mainly focusing on the imaginary part of the

Rytov kernels.

7.3 Representation of sensitivity kernels with asymptotic ray theory

7.3.1 WKBJ approximation

The sensitivity kernels derived in the previous section can be explicitly represented by using

WKBJ approximation (e.g., Tromp & Dahlen, 1992; Dahlen & Tromp, 1998). Tromp &

Dahlen (1993) obtained the scalar Green’s function for (7.8) in a laterally heterogeneous

media employing the asymptotic results of Dahlen (1980),

G(r, ω|r′) =

[

1

8πk(r)J(r, r′)

]
1

2

exp i

{
∫

l
kdr +

π

4

}

, (7.29)

where J is a geometrical spreading factor (J = sin ∆ for a homogeneous media, where ∆

is a epicentral distance), l represents a ray path from r′ to r. Note that we omit a term

associated with the Maslov index (Tromp & Dahlen, 1992) which represent the number of

caustics along a ray path. Here we only consider surface waves passing along minor arcs

(i.e., R1 & G1).

Following the WKBJ theory in Tromp & Dahlen (1992), the reference surface wave

potential U0 in (7.13) and (7.26) may be represented as,

U0(r, ω|rs) =

[

1

8πk(r)J(r, rs)

]
1

2

S(r, rs, ω) exp i

{
∫

l
kdr +

π

4

}

, (7.30)

where S(r, rs, ω) is the source term for a moment tensor source radiated toward r from

the source location rs. We have employed the same normalisation convention as used

in Tromp & Dahlen (1992). Although we have assumed 2-D scalar wave propagation,

the source term S still requires eigenfunctions at the source location. We may employ a

spherical reference model with appropriate crustal corrections for the source location to

calculate the eigenfunctions at the source.

Using (7.29) and (7.30), the explicit form of the sensitivity kernels (7.13) and (7.26) can

be derived. For the Born sensitivity kernels,

KU (r, r′, rs, ω) =
−ω
4πc0

[

1

J(r, r′)J(r′, rs)

]
1

2

S(r, rs, ω) exp i

(
∫

l1
kdr +

∫

l2
kdr +

π

2

)

, (7.31)

where l1 and l2 show ray paths from r′ to r and from rs to r′, respectively.

Similarly, the explicit expression for the Rytov kernels can be given by,
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KΦ(r, r′, rs, ω) = −ω
2

c20

[

1

2πk0

]
1

2

[

J(r, rs)

J(r, r′)J(r′, rs)

]

1

2 S(r′, rs, ω)

S(r, rs, ω)

× exp i

(
∫

l1
kdr +

∫

l2
kdr−

∫

l0
kdr +

π

4

)

, (7.32)

where l0 represents a ray path from rs to r. For practical calculations for these kernels,

we may evaluate the geometrical spreading J by J = sinX, where X is the distance along

a ray path. The integrations of wavenumbers along ray paths require a number of two-

point ray calculations in laterally heterogeneous structure. Although this would provide

ray theoretically “exact” sensitivity kernels, it demands a very heavy computation. This

computation can be significantly reduced if we employ the paraxial ray approximation as

described in the next section.

7.3.2 Paraxial ray approximation

The exponential term in (7.32) can be replaced by,

exp i

(

ψ1 + ψ2 − ψ0 +
π

4

)

, (7.33)

where ψ =
∫

kdr. This phase term can be efficiently derived from the paraxial Fresnel-area

ray tracing in the ray centered coordinate system (s, n) developed in chapter 4

δψF = ψ1 + ψ2 − ψ0 =
1

2
n2M(s), (7.34)

where M(s) is taken from equation (4.29) in chapter 4. Using (7.34), we can estimate

the paraxial Rytov kernels with just one two-point ray calculation for a central ray and

subsequent calculation of dynamic ray tracing along the ray from the source to receiver

and from the receiver to source.

The geometrical spreading factors in (7.32) can be estimated in a similar way to that

explained in the previous section, but we may need to replace the epicentral distance along

a ray segment with its great-circle distance, since we do not know the actual path length

for each ray segment without two-point shooting. This approximation works quite well if

we only work with a smaller region around the central rays or if the lateral heterogeneity

is not too strong and hence ray path deviation is not significant.

The phase term in (7.33) provides an interesting feature of the ray theoretical sensitivity

kernels. Just on the central ray, a distance from the central ray n in (7.34) is zero, hence

δψF = 0. Thus, the exponential term in (7.32) is always exp i(π/4) on the central ray path

and the sensitivity for the surface wave phase will not be zero on the ray. On the other

hand, the ray theoretical 3-D sensitivity kernels for body-wave travel time (e.g., Dahlen et

al., 2000) shrinks to zero on the central ray because it does not include this term, and thus
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the imaginary part of the exponential term becomes zero, resulting in the zero sensitivity

for body-wave travel times on the ray.

7.4 2-D sensitivity kernels for surface-wave phase speed structure

In this section, we display examples of sensitivity kernels derived from the Rytov approxi-

mation which correspond to the Fréchet derivatives for phase and amplitude perturbation

of surface waves and can be directly applied to inversions for phase speed maps.

7.4.1 Sensitivity kernels in a homogeneous model

We first display sensitivity kernels in laterally homogeneous reference model for a path to

CAN station from a source near Vanuatu. Fig 7.1 displays the imaginary and real parts of

the Rytov sensitivity kernels, which corresponds to Fréchet derivatives for the phase and

amplitude variation, respectively, at periods of 40 and 70 seconds without the effects of

radiation from the source. These kernels are ray theoretically “exact” kernels based on the

WKBJ approximation without the use of paraxial approximation. They are calculated by

assuming the source term in (7.32) to be such that S(r′, rs, ω)/S(r, rs, ω) = 1, and thus

there is no effect of source radiation. The reference phase speeds are 3.95 km/s at 40

seconds and 4.06 km/s at 70 seconds. Up to the fifth Fresnel zone is shown in these

maps. In the phase kernels (left-side figures in Fig 7.1), the bluish area corresponds to the

odd-order Fresnel zones (first, third and fifth) and reddish to the even-order Fresnel zones

(second and fourth).

It should be noted that some degree of sensitivity exists even outside the fifth Fresnel

zone for a monochromatic surface wave. Such side-lobes of the sensitivity kernels can

be canceled out when we consider the band-limited kernels and only the sensitivities

around the lower-order Fresnel zones remain (Woodward, 1992), although investigating

such kernels is not the objective of this study. It is worth noting that the longer paths

corresponding to the outer oscillations of the sensitivity kernels correspond to time shifts

of more than half the period. For a monochromatic wave the 2π ambiguity in phase maps

them into the same oscillation. But, in a real seismogram composed of a superposition of

many frequencies, the influence of the outer lobes will shift to later cycles in the waveform.

In both phase and amplitude kernels, we see that maximum sensitivities do not exist

on the centre path, but not 0 there, unlike 3-D sensitivity kernels (banana-doughnuts

kernels) for body waves based on the ray theory (e.g., Yomogida, 1992; Dahlen et al.,

2000; Hung et al., 2000). Such a feature of the kernels in Fig 7.1 is rather closer to the 2-D

sensitivity kernels for body waves (e.g., Li & Tanimoto, 1993; Li & Romanowicz, 1995).
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Fig. 7.1. Imaginary (left) and real part of the Rytov sensitivity kernels in a homogeneous reference model

for a path from Vanuatu to CAN station at 40 (top) and 70 seconds (bottom). The radiation effects at

the source is not considered in these kernels, and areas up to the fifth Fresnel zone are displayed. The

imaginary part of the Rytov kernels corresponds to the sensitivity kernels for phase variation of Rayleigh

waves, whilst the real part corresponds to amplitude variation. Red dotted line is the great-circle. The

reference phase speeds are 3.95 km/s at 40 seconds and 4.06 km/s at 70 seconds.
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Fig. 7.2. Cross profiles of sensitivity kernels in Fig 7.1 at the centre of the path. Phase kernel is shown in

a dotted line and amplitude kernels in a solid line.

The sensitivity varies along the path and the largest sensitivities are seen near the source

and receiver locations. The longer the periods, the wider is the width of the Fresnel zones

and the maximum sensitivity is somewhat smaller than the shorter period.

The cross profiles of the Rytov kernels in Fig 7.1 at the middle of the path as a function

of the distance from the central path are displayed in Fig 7.2. Since no effects of lateral

heterogeneity and source radiation are considered, the sensitivities are symmetric with

respect to the central path.

Next we investigate the effects of the source radiation on the sensitivity kernels. The

Rayleigh-wave radiation pattern calculated for a source in Vanuatu at depth of 50 km is

shown in Fig 7.3. The rest of the Rytov kernels with radiation effects shown in this section

are calculated with this radiation pattern.

In order to check source radiation effects, we display the Rytov kernels for two paths

with different azimuth at the source in Fig 7.4. The sensitivity patterns for a path to CAN
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Fig. 7.3. Rayleigh-wave radiation pattern for the source parameters used for the calculations of sensitivity

kernels. The directions for two stations, CAN and NWAO, are indicated with black dots.

exhibit an asymmetric strength of the sensitivity due to the effects of source radiation.

This is clearly seen in the cross profiles of the sensitivity across the path at the middle

of the path in Fig 7.5 (top). On the other hand, for a path to NWAO station, which is

located in the direction of the maximum source radiation, the cross profiles at the middle

of the path (Fig 7.5 bottom) do not show a conspicuous effect of radiation, and are still

symmetric with respect to the central path.

In either case, the oscillation cycle of the kernels as a function of the distance from the

central path (Fig 7.5) is not affected by the source radiation, suggesting that the elliptical

patterns of the Fresnel zones simply depend on the background phase speed structure and

that the source radiation only affects the magnitude and the polarity of the sensitivity.

The opposite polarity of the sensitivity kernels due to the initial phase differences of the

source radiation is seen in the north-eastern side of the source. Fig 7.4 also suggests that

the sensitivity becomes broader for the longer path (i.e., a path for NWAO). Furthermore,

we can see that the longer path tend to have somewhat smaller sensitivity in the middle

of the path, compared to the shorter path to CAN station.

7.4.2 Sensitivity kernels with paraxial approximation

So far we have displayed sensitivity kernels which are ray theoretically “exact” based on the

WKBJ theory. Now, we examine the kernels with the paraxial ray approximation, which

is useful for reducing the computation time especially for these kernels in heterogeneous

structure.

Examples of the ray theoretically “exact” and paraxial kernels for fundamental mode
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Fig. 7.4. Rayleigh wave sensitivity kernels at 70 seconds in a homogeneous model with the effects of source

radiation for paths to CAN and to NWAO stations. The reference phase speed is 4.06 km/s. Up to the

fifth Fresnel zone is shown. Red dotted line is the great-circle.

Rayleigh waves at 70 seconds in a homogeneous media are shown in Fig 7.6. We only

display the imaginary part of the Rytov kernels that corresponds to the kernels for surface

wave phase with up to the second Fresnel zone.

It is apparent that the paraxial kernels are a good approximation of the exact kernels,

except near the source and receiver. The kernels using the paraxial approximation cannot

be derived across the source and receiver positions, because the term M(s) in (7.34),

which is derived from the Fresnel-area ray tracing, can be evaluated only for the locations

between the source and receiver.
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Fig. 7.5. Cross profiles of sensitivity kernels in Fig 7.4 at the centre of the path as a function of distance

from the central ray. Phase kernel is shown in a dotted line and amplitude kernels in a solid line.

Since the paraxial ray approximation is only valid near the central ray path, the differ-

ences between the exact and paraxial kernels become more noticeable in the outer region.

Nevertheless, the overall features of the exact kernels within the first Fresnel zones are

represented very well by the paraxial kernels. This is especially true near the middle of

the path and the cross profiles of these exact and paraxial kernels in Fig 7.7 (top) are

almost identical for both paths to CAN and NWAO.

7.4.3 Sensitivity kernels in phase speed models

One of the significant advantage of the paraxial ray approximation is that we can easily

estimate the Fresnel areas in laterally heterogeneous media. We investigate the “exact”

and paraxial sensitivity kernels in a fundamental mode Rayleigh-wave phase speed model
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Fig. 7.6. Ray theoretically “exact” (left) and paraxial (right) sensitivity kernels for fundamental mode

Rayleigh waves at 70 seconds in a homogeneous model for paths to CAN (top) and NWAO (bottom)

stations. Only the imaginary part of the Rytov kernel with up to the second Fresnel zone is shown. Red

dotted line is the great-circle. All kernels include the effects of source radiation.

at 70 s derived in chapter 6 (Fig 7.8). The exact kernels are calculated by employing very

time consuming two-point shooting for each point with a grid interval of 0.25◦.

For a path to CAN station in Fig 7.9 (top), the exact and paraxial kernels are similar and

they also resemble the kernels in a homogeneous medium in Fig 7.6 (top). The ray path in

this heterogeneous model is not appreciably different from the corresponding great-circle.
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Fig. 7.7. Cross profiles of the imaginary part of the Rytov sensitivity kernels across a path at the middle of

the central ray (top) for homogeneous media in Fig 7.6 and (bottom) for heterogeneous media in Fig 7.9.

The red solid line is the ray theoretically “exact” kernel and the black dotted line is the paraxial kernel.

The similarity of these kernels is also seen in Fig 7.7 (left), suggesting that there is little

effect of the lateral heterogeneity on the sensitivity kernels for this path. This is mainly

because that the velocity gradients across the path are smooth around this ray path.

On the contrary, for a path to NWAO in Fig 7.9 (bottom), there are differences in the

exact and paraxial kernels. This is also clearly seen in the cross profiles of these kernels

in Fig 7.7 (bottom-right), and we can see the narrower width for the paraxial kernel than

the exact kernel.

Since the paraxial ray theory is relying solely on the velocity gradient along the central

ray path to represent the behaviour of the neighbouring rays, the width of the paraxial

Fresnel areas is simply determined by the velocity gradients on the ray path. Therefore,

the narrower width of the paraxial kernel suggest that the velocity gradient along the path

for NWAO may be too large to be treated with the paraxial ray theory. It is also apparent
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Fig. 7.8. Phase speed map Riz-GCiz in chapter 6 for a fundamental mode Rayleigh wave at 70 seconds.

that the shape of the Fresnel zones for the paraxial kernels for NWAO station are slightly

distorted at some part, implying the existence of a locally strong velocity gradient on the

central path where the width of the Fresnel zone suddenly shrinks (e.g., near the crossing

point of a ray to NWAO and the eastern margin of the Australian continent in Fig 7.9

(bottom-right)).

We can see that the width of the exact kernel in Fig 7.7 (bottom-right, red curve) for

NWAO station is not symmetric, i.e., the left-hand side (corresponding to the northern-

half of the kernels in Fig 7.9 (bottom) for NWAO station) of the cross profile of the

sensitivity kernel is slightly elongated compared to the right-hand side with respect to

the central ray path. This implies differences in the distribution of velocity gradient to

the northern and southern sides with respect to the central path to NWAO, although the

paraxial kernels are always symmetric with respect to the central ray paths since, in the

paraxial ray theory the width of the kernels depend simply on the velocity gradient on

the central ray. Note that the asymmetric amplitudes in the kernels in Fig 7.7 (left) for

CAN station are caused by the effects of source radiation, not by the differences in velocity

distribution in the structure.
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Fig. 7.9. Ray theoretically “exact” (left) and paraxial (right) sensitivity kernels for fundamental mode

Rayleigh waves at 70 seconds in a Rayleigh-wave phase speed model in Fig 7.8 for paths to CAN (top) and

NWAO (bottom) stations. Only the imaginary part of the Rytov kernel with up to the second Fresnel zone

is shown, red dotted line is the great-circle and yellow solid line the corresponding ray path. All kernels

include the effects of source radiation.

This particular example clearly shows how the paraxial ray approximation begin to

break down. In order to obtain a rigorous sensitivity kernels in a heterogeneous medium

considering the scattering and diffraction effects from the outside of the influence zone,

time consuming exact computations for the “exact” sensitivity kernels will be essential for

the practical application for surface wave tomography. However, the exact and paraxial
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kernels for the path to NWAO are still identical near the central ray path, which includes

the region of the influence zone introduced in chapter 4. In other words, the paraxial ray

approximation is still useful even for a path that passes through moderately heterogeneous

regions as in the path to NWAO in Fig 7.9, as long as we consider a very narrow region

around the central ray path, such as the influence zone utilized in the tomographic studies

in chapter 6.

7.5 Discussion

We derived 2-D sensitivity kernels for surface wave phase speed structures based on single

scattering theory with the Born and Rytov approximation using surface wave potential

representation. The sensitivity kernels shown in this chapter will be helpful to take account

of the effects of scattered and diffracted waves from a wide region around the path, which

cannot be treated with the influence zone.

The Rytov kernels for NWAO station in the laterally heterogeneous structure also imply

the limit of the paraxial ray approach for constructing the sensitivity kernels in phase speed

maps. Such a paraxial ray approximation has also been used in the recent development of

the three-dimensional sensitivity kernels (Dahlen et al., 2000; Hung et al., 2000; Zhao et al.,

2000), although these are calculated in vertically heterogeneous but laterally homogeneous

models, which correspond to the kernels in a homogeneous model in this study.

Since we have considered only monochromatic waves at particular frequency, sensitivity

kernels extend over considerably wider region with very little decrease in the magnitude of

the sensitivity away from the central ray path. When we consider the band-limited finite

frequency kernels, the side-lobes in each monochromatic kernels are canceled out due to

destructive interference, and only the sensitivities around the lower-order Fresnel zones

will be remained (e.g., Woodward, 1992).

It should be noted that both the Born and Rytov kernels obtained in this study are

based on the surface wave potential which corresponds to a scalar wave representation.

Thus, we cannot consider any mode-branch coupling nor the directional dependency of

the scattered waves. In order to consider these effects, we may need to work with three-

dimensional shear wavespeed models as in Marquering et al. (1998, 1999) rather than

with phase speed models, although it would then be more complicated to incorporate the

effects of off-great-circle propagation (cf. Kennett, 1998a).

The sensitivity kernels obtained in this study can be calculated quite efficiently except

for the “exact” kernels in laterally heterogeneous models. For example, it took around 15

minutes to compute the “exact” kernels in Fig 7.9 for NWAO station (distance is around 48

degree) in a phase speed map with 0.25◦ grids, whereas all the other kernels (the paraxial
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and Fresnel-area kernels in both homogeneous and heterogeneous models) for the same

path with the same grids can be calculated within a few seconds using a Compaq Alpha

with a 500 MHz processor. This encourages us to perform inversion for phase speed maps

using this kind of rigorous sensitivity kernels rather than the simplified treatment with

the influence zone, although they will still require much more computations than the use

of the geometrical ray theory and the influence zone.



8

Summary and prospects for future study

8.1 Summary of the thesis

Throughout this thesis, we have investigated various aspects of surface wave propagation

and inversion. The main emphasis has been placed on the development of new techniques

for surface wave analysis and their application to surface wave tomography, which make

it possible to extend the conventional methods of tomographic inversion of surface waves.

A new approach for measuring multi-mode dispersion from a single seismogram was

investigated in chapter 3 employing a fully non-linear waveform inversion scheme with the

neighbourhood algorithm of Sambridge (1999a). The concept that the path-specific 1-D

models can be a good representation of the multi-mode dispersion for the first a few modes

became the basis of the use of multi-mode phase speed maps as an intermediary for the

reconstruction of 3-D shear wavespeed models.

In chapter 4, we investigated the zone of influence for surface wave path using a hybrid

ray tracing technique, Fresnel-area ray tracing. The influence zone about surface wave

paths, over which surface waves are coherent in phase, was identified as approximately

1/3 of the width of the first Fresnel zone, representing a sampling region for surface waves

at finite frequency. It is, therefore, useful for treating the finite frequency effects of surface

wave propagation efficiently in an approximate manner. Furthermore, the use of the

Fresnel-area ray tracing allows us to accommodate off-great-circle propagation of surface

wave paths in the construction of phase speed maps.

Utilizing these techniques, a new concept of a three-stage approach for surface wave to-

mography was developed in chapter 5. Subsequently the three-stage inversion was applied

to the Australian region in chapter 6, and several sets of 3-D shear wave speed models

were constructed. This approach is helpful to compensate for some weaknesses in the

conventional methods of surface wave tomography, in that we can incorporate the effects

166
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of off-great-circle propagation as well as the finite-frequency of surface waves in frequency

and mode domains.

The 3-D models, which are obtained using the influence zone, are naturally smoothed

through the finite frequency effects and share similar features of the shear wavespeed

variations irrespective of the inclusion of the off-great-circle propagation. This implies that

the finite-frequency effects have a more important influence on the tomography models

than the effects of ray-path bending in the frequency range used in this study. It should be

noted that we have chosen somewhat conservative frequency ranges to avoid the complexity

of the short-period surface waves (less than 30 seconds) that are likely to be messed up by

the strong heterogeneities in the shallower layers, and thus the deviation of the ray paths

from the great-circle are not conspicuous in such frequency ranges.

In chapter 7, we investigated more rigorous two-dimensional sensitivity kernels for phase

speed structures of surface waves to take account of the effects of scattering and diffraction

with first-order scattering theory. Such an approach will be of importance to perform to-

mographic inversion considering effects of scattered waves come from outside the influence

zone. Although these kernels are preferable to consider more complex phenomena, they

require more computational resources.

8.2 Prospects for the future studies on surface wave tomography

The three-stage approach developed and applied in this thesis provides us with a means to

incorporate various effects of surface wave propagation efficiently with reasonable approx-

imations. The major objective of the practical application of the three-stage approach in

chapter 6 was to assure the utility of the method and to clarify how the inclusion of var-

ious phenomena, such as the off-great-circle propagation and the finite-frequency effects,

improve the tomography models. The new Australian 3-D models contain expected fea-

tures, that is, the lateral velocity variations are smoothed naturally by the influence zone.

However, some aspects of the technique, which will also be of importance for revealing the

mantle structure from surface wave information, are left to future studies. Now we discuss

such points that can be developed mainly within a framework of the three-stage inversion.

8.2.1 Inversions for anisotropy

8.2.1.1 Azimuthal anisotropy

Anisotropy in the mantle, which has not been considered in this thesis, provide a crucial

information on the structure and dynamics of the current status and the history of the

mantle. A number of former studies in both global and regional scale suggested the exis-
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tence of the azimuthal anisotropy in the upper mantle (e.g., Tanimoto & Anderson, 1985,

Montagner & Tanimoto, 1990, 1991; Lévêque et al., 1998; Debayle & Kennett, 2000a).

With the use of finite frequency kernels, we can expect that the azimuthal anisotropy,

which can be revealed through the phase speed inversion considering the influence zone,

will also be affected by the smoothing effects of finite frequency similarly to the smoothing

of velocity structure shown in chapter 6.

8.2.1.2 Polarization anisotropy

In chapter 6, we have only worked with Rayleigh wave observations to constrain the

isotropic shear wavespeed models, for the preliminary application of the three-stage ap-

proach. Although higher-mode phase speed measurements for Love waves tend to be more

ambiguous compared to Rayleigh waves due mainly to the significant overlap of the dif-

ferent modes and a low signal-to-noise ratio in horizontal components, path-specific 1-D

models derived from appropriate waveform fitting for Love waves can also give satisfactory

results of multi-mode phase speeds for the first few modes, as we have seen in chapter 3.

By treating Rayleigh and Love waves independently, we can exploit the possible max-

imum path coverage for both types of waves, which will be essential to obtain high res-

olution 3-D SV and SH velocity models. Three-dimensional distribution of polarization

anisotropy can then be estimated from these independent observations for SV and SH

structures, which will be of significance to discuss the composition of the Earth’s mantle.

8.2.2 Additional constraints

8.2.2.1 Polarization anomaly

For the fundamental-mode with appropriate path length (longer than 50◦), we can also

make some observations of the arrival angle anomalies of Love and Rayleigh waves using

three-component seismograms. Such polarization information is particularly helpful to

improve the tomography models since they are sensitive to the lateral velocity gradient

perpendicular to the paths, and thus have more sensitivity to the smaller-scale hetero-

geneity than phase information. Polarization information has previously been applied to

the global scale tomography for surface wave phase speed structures (Laske & Masters,

1996; Yoshizawa et al., 1999) and thus these observations can readily be incorporated in

the framework of the three-stage approach.

Information from polarization (or arrival angle) anomalies can play an important role

in determining the scale of velocity perturbations since they are sensitive to the velocity

gradient along a ray, unlike a phase anomaly which depends just on the velocity. As

long as we use only phase information, the velocity perturbation depends mainly on the
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damping applied during inversions. On the contrary, polarization information can be

a strong constraint on the size of velocity perturbation. Therefore, by employing the

polarization anomalies, we can expect that ambiguities in the maximum and minimum

velocity perturbation can be reduced and, eventually, the reliability of the tomography

models will be increased. The information of polarization anomaly is not only useful for

recovering the velocity structure, but also for the azimuthal anisotropy (Larson et al.,

1998; Laske & Masters, 1998).

8.2.2.2 Group speed

The use of phase speed depends on the knowledge of the source mechanisms, which is

crucial for the accuracy of the measured phase speed. On the contrary, group speed

measurements do not require the source mechanisms and are promising to obtain more

stable and reliable measurements (e.g., Levshin et al., 1992; Ritzwoller & Levshin, 1998),

although such measurements can only be readily applied to the fundamental mode. There

is a group velocity component in waveform fitting, but explicit measurements can extend

the frequency range. Group speed information has different sensitivities to the depth from

the phase speed, that is, group speed is more sensitive to the shallower structures in the

crust and the uppermost mantle than phase speed at the same frequency. Therefore, there

are advantages in working with both the phase and group speed information simultaneously

to constrain the final 3-D shear wavespeed models.

8.2.3 Toward higher frequency

8.2.3.1 Effects of mode-branch coupling

Since we work with phase speed maps without considering coupling between mode branches

in the three-stage approach, we have chosen somewhat conservative frequency ranges over

which the assumption of independent mode propagation can be justified and so we can

avoid the complex phenomena of the wave propagation in short periods (less than 40

seconds).

However, if there is strong heterogeneity around a ray path, the individual modes of

surface waves will not propagate independently and we need to take the coupling between

these modes into account. By using 2-D Earth models along a path, Kennett & Nolet

(1990) showed that interactions between different modes need to be considered for surface

waves with period less than 50 seconds.

The single scattering theory used in chapter 4 and 7 is able to treat just the effects

of scattering for the same mode-branch and we cannot consider the mode conversions

between different mode branches.
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One of the ways to tackle such problems has been proposed by Tanimoto (1990b) work-

ing with surface wave potential in phase speed domain. A kind of sensitivity kernels

considering the effects of mode coupling can be obtained with this technique, although

including the effects of coupling between a number of mode branches places considerable

computational demands when working, e.g., with a finite difference method, for the com-

putation of the surface wave potentials as adopted in the original form of the technique

(Tanimoto, 1990b). Working with reasonable approximations, e.g., restricting the number

of modes to be coupled, and the use of the first-order asymptotic results for the surface

wave potentials as used in chapter 7, it should be possible to apply in practical inversions

of surface waves.

For a 3-D structure, Kennett (1998a) has considered a full 3-D mode-coupling technique

extending the idea of 2-D mode coupling along a path (Kennett, 1984), however, the treat-

ment of mode-branch coupling in a 3-D structure is still too complex for the practical use,

because we need to consider different directions of propagations for all the scattered waves

in a 3-D structure. As long as we can ignore the coupling between different mode types,

that is, coupling between Love and Rayleigh waves, the 2-D mode-coupling technique is

still helpful in that we can consider the full mode interaction in 2-D structures along the

ray path around which most of the surface wave energy are likely to be confined.

Using the concept of the influence zone, we may restrict such areas in which the signif-

icant effects of mode coupling can be expected, e.g., the overlapped areas of the influence

zone for several modes.

8.2.3.2 Crustal corrections

To push the frequency ranges of interest to much higher levels than those used in this thesis,

a careful treatment of the effects of shallower structure, especially the crustal structure,

is also essential to avoid undesirable effects on the tomography models. We have used

the 3SMAC model (Nataf & Ricard, 1996) to correct the crustal part of the 1-D reference

models throughout this thesis, which has worked quite well in the frequency ranges used

in this study.

When we use much higher frequency surface waves (up to 20 seconds periods), an

appropriate crustal model is critical not only for the inversion for the structure, but also

for the forward modeling of surface waves at higher frequency for which the coupling

between mode branches should also be taken into account.



Appendix A

Paraxial ray approximation in a ray centered coordinate

system

In this appendix, we will derive an explicit formulation for a second partial derivative of

the phase ψ in (4.15) and (4.16) in chapter 4 based on the paraxial ray approximation.

We first consider the Taylor expansion of the phase ψ around a point on the ray (s, 0) at

fixed s,

ψ(s, n) = ψ(s, 0) + n
∂ψ(s, n)

∂n

∣

∣

∣

∣

n=0
+

1

2
n2∂
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. (A.1)

Since the wavefront is perpendicular to the ray in ray centered coordinates,

∂ψ(s, n)

∂n

∣

∣

∣

∣

n=0
= 0, (A.2)

and so the phase ψ at (s, n) can be expressed as,

ψ(s, n) = ψ(s, 0) +
1

2
n2M(s), (A.3)

where M(s) = ∂2
nψ(s, n)|n=0.

Following Yomogida (1988), M(s) can be determined from the geometrical spreading

evaluated at (s, 0). For the time being, let us introduce a “ray” coordinate system (s,m)

(Fig A.1). This coordinate system is different from the “ray-centered” coordinate system.

In ray-centered coordinates, the central ray is fixed and a neighbouring point (s, n) is

represented by a perpendicular distance n from a point (s, 0) on the central ray (Fig 4.3),

whilst in ray coordinates, s is measured along a different ray path passing through the

point (s,m) which is under consideration. In other words, we need to consider different

coordinates for points on different ray paths as seen in Fig A.1. For the points on the

central ray in a ray-centered coordinate system, the “ray” (s,m) and “ray-centered” (s, n)

coordinates will be the same.

In the ray coordinates for 2-D case, the Laplacian of the phase ψ can be written as,
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Fig. A.1. Ray coordinate system. (s, m) is evaluated from a ray passing through that point and another

orthogonal coordinates (s′, m′) is introduced for all rays. So that the direction of m is always perpendicular

the ray and tangent to the wavefront.
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where h1 and h2 are scaling factors for s and m, respectively. In this ray-coordinate

scheme, s is always a tangent to the ray path and m is perpendicular to the ray path,

resulting in,

∂ψ

∂s
= k =

ω

c
,

∂ψ

∂m
= 0. (A.5)

Substituting (A.5) into (A.4) with the scaling factors h1 = 1, h2 = J ,

∇2ψ =
ω

J
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dJ
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where the constant J is assumed to be a function of s. The scaling factor h2 = J corre-

sponds to the geometrical spreading.

Next let us get back to ray-centered coordinates (s, n) and investigate the relation

between M and J . By differentiating (A.3) with respect to s and n,

∂ψ

∂s
= k +

1

2
n2dM

ds
, (A.7)

∂ψ

∂n
= Mn. (A.8)

The Laplacian of the phase ψ in this case can be obtained from (A.7) and (A.8),
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We then get the relation between M and J by comparing (A.6) and (A.9),

M(s) =
ω

c(s)J(s)

dJ(s)

ds
. (A.10)

Since we already know the geometrical spreading J as in (4.13), the evaluation of M(s) is

straightforward.

In (A.10), we need to differentiate J with respect to s. This can be done analytically

using (4.13) and the derivative can be expressed in terms of the solutions of the DRT

equations (4.6)-(4.8),
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Appendix B

Correction of the paraxial Fresnel area at source and receiver

The radius of the paraxial Fresnel area in (4.23) in chapter 4 shrinks to 0 at the source and

receiver locations because the geometrical spreading J disappears there. However, as seen

in Fig 4.6, the exact Fresnel area should have finite radius even at such singular points.

Correction of the paraxial Fresnel area can be made by considering the simple geometry

around source and receiver (Fig B.1).

We pay attention only to the source region as shown in Fig B.1. To extend the paraxial

Fresnel area around the source location, it is sufficient to consider two points Fa and

Fb. Let us consider a path AFaB; in the far field, we can expect ∆Fa
A ≪ ∆B

A, so that

∆B
A ≈ ∆Fa

B . Using (4.24), the radius of the paraxial Fresnel area ∆Fa
A at the source can be

given as,

∆Fa
A ≈ λ

2
. (B.1)

For a path AFbB along the ray, we can extend the paraxial Fresnel area slightly over

the source position. In this case, ∆F
B = ∆F

A + ∆B
A . Inserting this relation into (4.24),

∆Fb
A =

λ

4
. (B.2)

The location of the point Fb relative to the source can be obtained from an extrapolation

along the ray.

The extended paraxial Fresnel area can be obtained from interpolation of such points

surrounding the source on the boundary of the first Fresnel zone. The corrections for the

receiver and caustics can be similarly made by following the same procedure as above. The

correction of the influence zone at these points is obtained in a similar fashion; we can

evaluate the radius of the zone to be 1/3 of that of the first Fresnel zone, i.e., ∆Fa
A ∼ λ/6

and ∆Fb
A ∼ λ/12
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Fig. B.1. Illustration of the correction of the paraxial Fresnel area at source and receiver.



Appendix C

Model parameterisation for phase speed maps

In this appendix, we explain the parameterisation of phase speed models used in chapter 6.

In order to represent the phase speed distribution in a two-dimensional parameter space

(θ, φ), we first divide the region of interest into a set of the geographic cells, and then

consider knots at the centre of each cell (Fig C.1 (a)). We do not simply use the phase

velocity in these cells as model parameters, but we use a cubic B-spline parameterisation

on a sphere (e.g., Wang & Dahlen, 1995b) to smooth the models. The cubic B-splines

centred at these knots are represented by

F(D) =























3
4D3

1 − 6
4D2

1 + 1 : D ≤ D̄,

−1
4D3

2 + 3
4D2

2 − 3
4D2 + 1

4 , : D̄ ≤ D ≤ 2D̄,

0 : D ≥ 2D̄

(C.1)

where D̄ is the average distance between neighbouring knots, and D1 = D/D̄ and D2 =

(D − D̄)/D̄.

Using such spherical B-splines as the basis function, the phase speed variation at an

arbitrary point (θ, φ) on a sphere can be represented as,

δc(θ, φ)

c
=

N
∑

j=1

mjFj(D(θ, φ)), (C.2)

where N is the total number of the model parameters, and D(θ, φ) is the distance between

the point (θ,φ) and the knot at the centre of the jth basis function (Fig C.1 (b)). An

example of the spherical spline function F(D) is shown in Fig C.2 (a).

The average interval D̄ between knots controls the horizontal smoothness of the phase

speed model. In this study, the use of the dense coverage of paths (Fig 6.1 (b)) enables us

to set D̄ to be as small as 2◦.

176



Model parameterisation for phase speed maps 177

-6˚

-6˚

-4˚

-4˚

-2˚

-2˚

0˚

0˚

2˚

2˚

4˚

4˚

6˚

6˚

-6˚ -6˚

-4˚ -4˚

-2˚ -2˚

0˚ 0˚

2˚ 2˚

4˚ 4˚

6˚ 6˚

(a)

-2˚

-2˚

0˚

0˚

2˚

2˚ 4˚

-2˚

0˚ 0˚

2˚ 2˚

4˚ 4˚

(b)

-
D

(θ,φ)

D

Fig. C.1. (a) Illustration of the cells divided by the geographic longitudinal and latitudinal lines. At the

centre of each cell, we define the knots for which the spherical spline functions are defined. (b) Geometrical

configuration for D and D̄ around the jth cell. Note that the average distance D̄ need not be exactly the

distance between two neighbouring knots as shown in this figure.

When the geographical cells are used as a guide to parameterise the 2-D space on a

sphere, we need to take care of the varying sizes of the cells with latitude. We have checked

the effects on the final models through several tests working with different measures for

D̄ based either on the apparent geographical distance or on the actual geodetic distance

(Fig C.2).

For the geographic distance, D̄ is fixed and measured as 2◦(≈ 222km) everywhere on

the sphere. On the other hand, for the geodetic distance, D̄ varies with latitude and the

azimuth from a knot location to a target position (θ, φ), e.g., for a knot at the equator, D̄
is always 2◦ (≈ 222 km) for all directions, and for a knot at −31◦ latitude, D̄ = 2◦ ≈ 190

km along a parallel of latitude whereas D̄ = 2◦ ≈ 222 km along a meridian.

Examples of the cubic B-splines are shown in Fig C.2. Near the equator, there is almost

no distortion due to the variation of distance measured either as the geodetic (Fig C.2

(b)) or as the geographic distances (Fig C.2(c)). However, as we go to higher latitudes,

there is some distortions caused by the differences in the measures of distance. In Fig

C.2 (d), with the geodetic measure for D̄ the B-spline takes an egg-like shape due to

the shrinkage of the actual geodetic distance at 31◦ south latitude. If we measure D̄ as

the geographic distance, the pattern of the B-splines (Fig C.2 (e)) at 31◦ south latitude is

nearly the same as that near the equator (Fig C.2 (c)) showing the similar lateral extent of

the B-splines. Thus the region which is covered by one B-spline function in the geographic

measure of D̄ becomes larger than in the geodetic case. To adjust the contribution from
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Fig. C.2. (a) Spherical B-spline function F at a knot centred upon (1◦, 1◦) with average knot interval

D̄ = 2◦. D̄ is measured as the geodetic distance. (b) Same as (a) but viewed from a different angle. Green

dots show locations of knots. (c) Spherical B-spline function at the same location as (b) but the distance

D̄ is measured as the geographic distance. (d) Same as (b) but the knot is centred at (−31◦, 1◦). (e) Same

as (c) at (−31◦, 1◦). For the geographic measure of D̄ in (c) and (e), the F is multiplied by sin(Θ), where

Θ is the colatitude of the knot position.
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a single basis function located in regions where there are high density of knots (i.e., at

higher latitude), we multiply F by a term | sin(Θ)| depending on the colatitude Θ when

we use the geographic measure of D̄. Therefore, the amplitude of the B-spline is somewhat

suppressed in Fig C.2 (e).

We have applied both of the schemes for measuring D̄ in the actual inversions for phase

speed maps. Despite the differences in the definition of D̄, the models obtained are almost

identical and do not show any conspicuous differences. Therefore, in this study, we adopt

the geodetic measure for D̄.

Although our tests with different ways of measuring D̄ suggest that the choice of the

geographic or the geodetic distances does not have a significant impact on the final results,

the configuration of the knots in this study is still based on the geographical cells. Thus

we should be careful about the possible bias in the regions which are far from the equator

where the densities of the knots become higher. For global studies and regional studies

including polar regions, the use of a triangular-type representation with a comparable size

for all the cells on a sphere (e.g., Wang & Dahlen, 1995b, van der Lee & Nolet, 1997) will

be helpful to compensate for the deficiencies in geographical grids, although this is not

the case in this study for which the region of major interest lies in a comparatively narrow

zone between 10◦ and 40◦ south latitude.



Appendix D

Rayleigh-wave phase speed maps

In this appendix, Rayleigh wave phase speed maps for the fundamental and the first three

higher modes used to constrain the 3-D shear wave speed model for a model set Riz-GCiz

are displayed at every 20 seconds.
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Fig. D.1. Phase speed maps Riz-GCiz for fundamental-mode Rayleigh waves.
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Fig. D.2. Phase speed maps Riz-GCiz for 1st higher-mode Rayleigh waves.
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Fig. D.3. Phase speed maps Riz-GCiz for 2nd higher-mode Rayleigh waves.
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Fig. D.4. Phase speed maps Riz-GCiz for 3rd higher-mode Rayleigh waves.



Appendix E

3-D shear wavespeed model gallery

The full sets of 3-D shear wavespeed models and corresponding cross sections for all types

of models (GC0, RAY-GC0, GCiz, Riz-GC0 and Riz-GCiz ) obtained in chapter 6 are

displayed in this appendix. The relation of these models are summarised in Fig 6.7.
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Fig. E.1. Shear wavespeed model GC0 in the upper mantle. Reference velocities are 4.41 km/s at 100 km,
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Fig. E.2. Cross sections of shear wave speed model GC0 in Fig E.1.
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Fig. E.3. Shear wavespeed model RAY-GC0 in the upper mantle. Reference velocities are the same as Fig

E.1
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Fig. E.4. Cross sections of shear wave speed model RAY-GC0 in Fig E.3.
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Fig. E.5. Shear wavespeed model GCiz in the upper mantle. Reference velocities are the same as Fig E.1
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Fig. E.6. Cross sections of shear wave speed model GCiz in Fig E.5.
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Fig. E.7. Shear wavespeed model Riz-GC0 in the upper mantle. Reference velocities are the same as Fig

E.1
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Fig. E.8. Cross sections of shear wave speed model Riz-GC0 in Fig E.7.
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Fig. E.9. Shear wavespeed model Riz-GCiz in the upper mantle. Reference velocities are the same as Fig

E.1



3-D shear wavespeed model gallery 195

-400
-200

(a) N-S cross sections
Riz-GCiz

120˚ E

-400
-200 124˚ E

-400
-200 128˚ E

-400
-200 132˚ E

-400
-200 136˚ E

-400
-200 140˚ E

-400
-200 144˚ E

-400
-200
-400
-200

d
ep

th
 (

k
m

) 

-50 -40 -30 -20 -10 0

latitude

148˚ E

-400
-200

(b) E-W cross sections

-10˚ S

-400
-200-14˚ S

-400
-200-18˚ S

-400
-200-22˚ S

-400
-200-26˚ S

-400
-200-30˚ S

-400
-200-34˚ S

-400
-200
-400
-200

d
ep

th
 (

k
m

) 

110 120 130 140 150 160 170 180 190

longitude

-38˚ S

-8 -6 -4 -2 0 2 4 6 8

perturbation (%)

Fig. E.10. Cross sections of shear wave speed model Riz-GCiz in Fig E.9.



References

Aki, K. & Richards, P. G., 1980. Quantitative Seismology, Theory and Methods, W. H.

Freeman, San Francisco, Calif.

Babich, V.M., Chikhachev, B.A. & Yanovskaya, T.B., 1976. Surface waves in a vertically

inhomogeneous elastic halfspace with a weak horizontal inhomogeneity, Izv. Acad.

Sci. USSR. Physics Solid Earth, 4, 25-32.

Born, M. & Wolf, E., 1999. Principles of Optics, 7th ed., Cambridge Univ. Press,

Cambridge.

Cara, M., 1978. Regional variations of higher Rayleigh-mode phase velocities: a spatial-

filtering method, Geophys. J. R. astr. Soc., 54, 439-460.
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Červený, V., 1985. The application of ray tracing to the numerical modeling of seismic

wave fields in complex structures, in Seismic Shear Waves, Part A: Theory, pp

1-124, ed. Dohr G., Geophysical Press, London.
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